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NOMENCLATURE

A Vector Potential function

A Psi (t) component of A

A I Psi component of A in region I

A II  Psi component of A in region II

A III Psi component of A in region III

A*IV Psi component of A in region IV

A Psi component of A in region V

'pv

B Magnetic flux density or magnetic induction

BI Magnetic flux density in medium I

B Magnetic flux density in medium II
42

Bnl Normal component of B in medium 1

* Bn2  Normal component of B in medium 2

Br  Radial component of the magnetic flux density

Brl Radial component of B in region I

Brl I  Radial component of B in region II

B rll Radial component of B in region III

B rIV  Radial component of B in region IV

BrV Radial component of B in Region VI

B r Eta component of the magnetic flux density

B diEta component of B in region I
.,nV

B ailcmoeto nRgo

rV.

BIIIH Eta.componentof.the.magnetc.flux.densit



Bfl I  Eta component of B in region II

Bl TIIIEta component of B in region III

B lV  Eta component of B in region IV

BIV Eta component of B in region V

B Theta component of the magnetic flux density

dv Elemental volume

e Unit normal vector in radial direction
e r

e n eUnit normal vector in eta direction

e Unit normal vector in theta direction

e a Unit normal vector in azimuthal direction

el,e 2 ,e 3  Metric coefficients for a prolate spheroidal coordinate system

H Magnetic field intensity

HExternally applied uniform field
0

Htl Tangential component of H in medium 1

Ht2 Tangential component of Hi in medium 2

H1 Magnetic field intensity in medium 1

H2 Magnetic field intensity in medium 2

I Electric current

J Magnitude of J
S

J Electric current density

Jr Radial component of J

s Surface current density
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J n Eta component of

J Theta component of J

Psi component of

i Electric current density of internal current band

12 Electric current density of external current band

Magnitude of J

J2 Magnitude of J

n 12 Unit vector normal to interface, directed from medium I into

medium 2

m
P (cos 6) Associated Legendre function of the first kindP

P pVariable used for simplification

p Integer from one to infinity

Qm(cos 6) Associated Legendre function of the second kind

Ri(i=l,2,3) Component of radius vector to boundary i which has spherical

symmetry

r Radius of spherical coordinate system

Spherical coordinates

r" Distance of the point where A is being determined from

x,y,z Rectangular coordinates

l,2,)3, n 4 Constants (specified values of rI)

rle, Prolate spheroidal coordinates

Magnetic permeability

rRelative magnetic permeability
r
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PIo Permeability of free space

Permeability of medium 1

2  Permeability of medium 2

2 Variable equal to cosh

VVariable equal to cos q

cfm Magnetic scalar potential

Magnetic susceptibility

3Vector Laplacian operator

A Psi vector component of the vector Laplacian of A in spherical
or prolate spheroidal coordinates

Vector Laplacian of A in prolate spheroidal coordinates

-1/2

(sinh2 r + sin2 0) A 1 i

a 2(sinh n sin 
e) inhn (sinh n A

+ 1si 6 A~)
DO sin - (sine

1* A Vector Laplacian of A in spherical coordinates

[D2 A 2 2 A2 + cot 6 ANr A 2e + - - +L_ +
rO r 2 sin 2

V 2  Scalar Laplacian operator

7 Divergence operator

Vx Curl operator

(VxA)r Radial component of the curl of

x



(VxA) Eta component of the curl

if(VxA) 0  Theta component of the curl A

v
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EXECUTIVE SUMMARY

OBJECTIVE

The objective of this theoretical work was to derive solutions to static

ferromagnetic problems that include current-carrying coils, uniform inducing fields,

and linear and homogeneous ferromagnetic bodies. The solutions are intended to be

used as classical benchmark validation problems for comparison with solutions to

ferromagnetic problems obtained by various numerical techniques such as the finite

difference method, the finite element method, and the integral equation iterative

solution method.

APPROACH

After deriving the governing differential equations from Maxwell's equations

for classical magnetostatic field theory, the method of separation of variables

was employed to obtain the problem solution.

RESULTS

The magnetic induction was derived for several configurations of ferromagnetic

spherical and prolate spheroidal bodies (hollow and solid) with internal and/or

external infinitesimally thin spherical and spheroidal current bands, respectively.

The magnetic induction is presented for ferromagnetic spherical and spheroidal

bodies in a constant inducing field of arbitrary orientation. The ferromagnetic

bodies were assumed to be linear and homogeneous. The reduction of the current

band problem solutions to that of a current band in a vacuum is shown when the

permeability of the ferromagnetic body is allowed to approach that of a vacuum.

The application of the superposition principle, to obtain a total magnetic field

solution for the case of a ferromagnetic body (hollow or solid) surrounding and/or

surrounded by a current band and immersed in a uniform inducing field of arbitrary

direction, is discussed.

xii



ABSTRACT

Magnetic induction is calculated for several configura-
tions of ferromagnetic spherical and prolate spheroidal
bodies (hollow and solid) with internal and/or external
infinitesimally thin spherical and spheroidal current bands,
respectively. Magnetic induction is presented for ferro-
magnetic spherical and spheroidal bodies in a constant

1* inducing field of arbitrary orientation. The ferromagnetic
bodies are assumed to be linear and homogeneous. The reduc-
tion of the current band problem solutions to that of a
current band in vacuum is shown when the permeability of the
ferromagnetic body is allowed to approach that of vacuum.
The application of the superposition principle to obtain a
total magnetic field solution for the case of a ferromag-
netic body (hollow or solid) surrounding and/or surrounded
by a current band and immersed in a uniform inducing field
of arbitrary direction, is discussed.

ADMINISTRATIVE INFORMATION

This work was performed under Program Element 11221N, Project B0005, Task Area

B0005-SL-001, and Work Unit 2704-120.

INTRODUCTI ON

It is well known that exact analytical solutions of Maxwell's equations using

classical formulation have been limited to body shapes and inhomogeneities that

conform to a few separable coordinate systems. With the application of modern

digital computers and numerical methods to obtain solutions of many magnetostatic

field problems for practical applications, the need for classical benchmark valida-

tion problems arose. This theoretical report presents solutions of Maxwell's

equations for magnetostatic problems. It summarizes twelve different problem solu-

tions and discusses how to obtain the total field solution to many others through

the application of the superposition principle. Many of these problem solutions

may be used as benchmark type classical Folutions and for research in studying

magnetostatic effects. In addition, the solution techniques and verification

methods presented in this report show the fundamental techniques of solving

magnetostatic boundary value problem solutions of Laplace's and Poisson's equations

for spherical and prolate spheroidal coordinate systems.



COORDINATE SYSTEMS

SPHERICAL COORDINATE SYSTEM

The spherical coordinate system is formed by the intersection of coordinate

surfaces of concentric spheres, cones with apexes at the center of the spheres,

and half planes emerging from the axis of the cone. The three coordinates of a

point are the radius r of a sphere, the half-angle 0 of the cone, and the angle

between a half-plane and the x axis. Figure 1 depicts the spherical coordinate sys-

tem. With each point in the spherical coordinate system, there are associated

three mutually perpendicular unit vectors e e 0 , and e

z

A

A
M (r, 0, e)

0i y r "

0 I

'\ I Or

o <0 roo
o < o <7r

x = r sin 0 cos
y = r sin 0sin

z = rcos0

Figure I - Spherical Coordinate System
and the Corresponding Unit Vectors

2
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PROLATE SPHEROIDAL COORDINATE SYSTEM

The prolate spheroidal coordinate system can be formed by rotating the two-
dimensional elliptic coordinate system, whose traces in a plane are confocal

ellipses and hyperbolas, about the major axis of the ellipse.
1 ,2

Flammer2 notes that it is customary to make the z-axis the axis of revolution.

Figure 2 depicts the three-dimensional prolate spheroidal coordinate system. In

this case, the coordinate surfaces are: prolate spheroids for n = constant; hyper-

boloids of two sheets for 8 = constant; meridian planes for i = constant. The

prolate spheroidal coordinates shown in Figure 2 are related to rectangular

coordinates by the following transformation equations:

x = a sinh n sin 0 cos (la)

y = a sinh r sin 6 sin 1 (lb)

z = a cosh n cos 6 (1c)

where 0 < q <

O < < 2nT

We have denoted the interfocal distance by 2a and the prolate spheroidal coordinates

by (

3
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BASIC EQUATIONS

FIELD EQUATIONS

The formulation of the present boundary value problems implies the solution

of Maxwell's equations for each medium subject to the classical boundary conditions.
Starting with the general form of Maxwell's equations and the constitutive relations4! derived.

(2a)*

P V~ VB=0

D E+P B=Ip (H +M) (2b)
0 0

where H = magnetic field intensity (A/m)**

J= electric current density (A/rn 2

2D = electric flux density (C/in

E = electric field intensity (V/m)

B = magnetic flux density (T or Wb/m)

3
p = free charge density (C/rn

P = polarization (C/rn 2

M =magnetization (Aim)

F- permittivity of vacuum = 8.85 pF/m

10=permeability of vacuum = 4007T nH/rn

*The del operator V is defined with respect to the rectangular coordinate §ys-
tern and is strictly valid in a rectangular coordinate system only. Very often Vx
and V . are used generally as equivalent symbols for curl and divergence. This use
is followed in this report.

**Definitions of symbols are given on page vii.

5



For the magnetostatic case, the applicable Maxwell's Equations (2a) reduce to

V x H =J V B = 0 (3a)

and the constitutive relation from Equations (2b) is

B = (H+M) (3b)

In general, for ferromagnetic materials, B is a nonlinear function of H

B = f(H) (4)

where, as shown in Figure 3a, B is not a single valued function of H. The function

f(H) depends upon the magnetic history of the material, that is, how the metal

became magnetized. This is referred to as hysteresis. It is also noted that any

~magnetic property of a ferromagnetic material has meaning only if it is considered

together with its complete magnetic history.

In certain practical engineering problems, the variation in the magnetic field

intensity is small, and the functional relationship between B and H is approxiately

linear (see Figure 3b). For the linear case where the material is isotropic, the

magnetic inductionlB is related to the field intensity H by the relationship

B = p (Xm+l) H p 'pr H = pH (5)

where Xm = magnetic susceptibility (dimensionless)

P = magnetic permeability of media (H/m)

(Xm+l) = pr = relative permeability (dimensionless)

0 = permeability of vacuum = 400TT nH/m

This report assumes that the ferromagnetic bodies have isotropic and linear material

properties.

6



MAGNETIC FIELD INTENSITY H, (A/m)

Figure 3a - Curve for a Ferromagnetic Material

FLUX DENSITY B. (Wb/m2)

MAGNETIC FIELD INTENSITY i, IA/m)

Figure 3b - Curve for a Ferromagnetic Material
at Low Inducing Fields

Figure 3 - Typical Magnetization Curve

7



SUPERPOSITION PRINCIPLE

Maxwell's Equations (2a) are linear partial differential equations. As a con-

sequence of this linearity, the superposition principle states that, generally, any

sum of the solutions of Maxwell's equations is again their solution. Combined with

the uniqueness theorem, which states that only one solution of Maxwell's equation

satisfies any set of prescribbd boundary conditions, the superposition principle

justifies any series or sum solution of Maxwell's equations.

Thus, if one desires to find the magnetic field solution to a system consisting

of a ferromagnetic body in a uniform field and in the presence of current carrying

conductors, the superposition principle may be applied. The magnetic field solution
for a ferromagnetic body in a uniform field only is obtained first, then the magne-

tic field solution for the same ferromagnetic body in the presence of the current

carrying conductors only is determined. The total magnetic field solution is then

the sum of the two independent solutions. This technique allows, for example, one

to find the total field solution for a hollow prolate spheroid immersed in a uniform

field and surrounded by a current band.

MAGNETIC INDUCTION OF BODIES IN UNIFORM FIELDS

For the case of a ferromagnetic body of permeability p in a uniform field in

the absence of current carrying conductors, Maxwell's Equations (2a) reduce to

Vx H = 0 (6a)

V B = 0 (6b)

Because the curl of the gradient of any scalar function f is found to be identically

zero [ xvf=O] the magnetic field intensity H is derivable as the gradient of a

scalar potential m. That is

S-V m  (7)

8



where m is the magnetic scalar potential (in amperes). Using Equations (5) and

(7) to find the magnetic flux density and substituting the result into Equation (6b)

reduces to

V =0 (8)

which is known as Laplace's equation. This is the governing differential equation
for the problem of a body immersed in a uniform field.

The general boundary conditions to be satisfied at the interface of dissimilar

materials may be derived from the limiting integral form of Maxwell's equations and

are given by

n BB ml _m2_(9a

12 (B2-B = 0 or Bnl = Bn2 or Pi n = n (9a)

n12 x (H2-H = 0 or Ht2 = Htl or =ml = m2 (9b)

where the subscripts 1 and 2 indicate the media under consideration, and n12 denotes

the unit vector normal to the interface and directed from medium 1 into medium 2.

MAGNETIC INDUCTION OF BODIES DUE TO CURRENT CARRYING CONDUCTORS

The divergenceless (VB=O) nature of the magnetic flux density in conjunction

with the fact that the divergence of the curl of any vector function is zero

[V-(xY=O] allows the introduction of the magnetic vector potential field (A)

B = VxA (10)

9<



where A is the magnetostatic vector potential function in webers per meter. The

substitution of Equation (10) into Equation (3a) gives the fundamental equation of

the vector potential of the magnetostatic field.

V x (VxA) - (VxA) xV 1 J (11)

For homogeneous materials, as assumed in this report, the magnetic permeability is

spatially invariant. Hence

i 0 (12)

and Equation (11) reduces to

Vx V x A =P (13)

Using the vector identity

V x V x A = V (V.A) - A (14)

Equation (13) becomes

V(V.A) A= jpJ (15)

The magnetostatic vector potential is characterized by the important property that

its divergence can be conveniently chosen to be zero.

V.A = 0 (16)

10



Equation (15) reduces to the vector Poisson differential equation.

A= - iJ (17)

This is the governing equation for our calculations.

The general boundary conditions to be satisfied at the interfaces of stationary

dissimilar media may be derived from the limiting integral forms of Maxwell's equa-

tions and are given by

1 2  (B2-B )  0 or Bnl B n2 (18a)

n12 x (H2-H) = Js or H t2-H tl Js (18b)

where the subscripts 1 and 2 indicate the media under consideration, and n 12 denotes

the unit vector normal to the interface and is directed from medium 1 into medium 2.

In the case where the materials are linear and isotropic, Equations (18a) and (18b)

become

n (P2 H2 -IH 1 ) 0 (18c)

n 12 x = (18d)

where J is a true surface current density that may exist at the interface. At an

interface where s = 0, Equations (18b) and (18d) need to be modified accordingly.

11odigy



SOLUTIONS FOR SPHERICAL BODIES

SOLID SPHERE OR SPHERICAL SHELL IN A UNIFORM FIELD OF ARBITRARY DIRECTION

Several important types of problems relating to magnetized bodies in an exter-

nal magnetic field have been solved3 '4 '5 by determining the solution to Laplace's

equation for the magnetic scalar potential. Generally, these solutions have been

derived for the case of the uniform external magnetic field in the direction of the

z axis of a spherical coordinate system. Both constant external field problems,

solid and shell, were solved and programmed on the digital computer by D.A. Nixon of
6

the Center, for the case of an arbitrarily orientated external magnetic field.

The solutions found in Reference 6 were presented in Cartesian coordinates. The

problem of finding the magnetic induction for an infinitesimally thin current band

surrounding a spherical shell 7 can be generalized to include an external magnetic

field. Linear superposition may be applied to find the solution in this case.

Therefore, in Appendix A, the Cartesian expressions were converted to spherical

coordinates to be compatible with other problem solutions in this section of the

report.

SOLID SPHERE SURROUNDED BY AN INFINITESIMALLY THIN SPHERICAL CURRENT BAND

We now solve the boundary problem of a ferromagnetic sphere of radius R1 and

homogeneous permeability '1 2 surrounded by an infinitesimally thin current band of

radius R2 having a constant current density J. Figure 4 identifies the three

regions of interest. Regions II and III have a permeability equal to the

pcr....a.ilt of vacuum iio0 which fju convenience will be labeled jl The proble's

spherical symmetry w'ggests that a spherical coordinate system such as that shown

in Figure 1 be used in the problem solution.

12



01_ INFINITESIMALLY

R-l CURRENT BAND

92 FERROMAGNETIC MATERIAL

Figure 4 -Ferromagnetic Sphere Surrounded by an
Irifinitcsimally Ihin Current Band
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Ampere's law states

VxH=J (19)

and, because V • B = 0, the induction B must be the curl of some vector field A.
The governing differential equation for A, when homogeneous and linear materials are

considered, is from Equation (11).

A =-p (20)

*We note that a distinction is drawn between the operator V2 called the scalar
Laplacian operator and the vector Laplacian operator designated by:0 . The vector

V Poisson's equation in rectangular coordinates can be treated as three uncoupled
*; scalar equations as shown below.

F32Ax 2A 2A1 aA 3'A
4- 4+_J___ex2 + P e 2 J

+! F2A 2A 32A1] ^

z bX2  y 3z2 J x x y y z 2

where A. = V'A i =J for i = x,y,z. However, if the vector Poisson's equation
is resolved into orthogonal components in other coordinate systems, the differential
operation mixes the components together giving coupled equations as shown below for
spherical coordinates.
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A 2 3A rA2r + r 7A r3 2A 

r r _0 r

- 22 D0+ r 2 i2e 2 r -De r 2 A 62
r sine

+ 1 2r 2 A 2cot6 A- e co
r 2 r 2 2 2 2 2 2 2

rs4 3r~ r si r rsi

2 2

D A 1 A a

+ "2- r 2 1 _2At

r 2 DO r 2 sin e r2r 202 rr sin 362

cot e LA I a A 2 + 2A+ A 2 2 3A/ 1 c1 ot23 2 iI 2+~ 2 .22
r r2 sin 2 r r sinO r 302

r r2 sin2 0 3p r2sin 0~ r0 si2 '--

r r 6 ie

The general expression in spherical coordinates for a current density is

J= e Jr  + J 0J0 +e Je (21)

15



where the defines unit orthogonal vectors. For stationary currents in vacuum,

the vector potential function that satisfies Equation (20) is given by

0 17

A = n r dv (22)I v

where dv = elemental volume in the current-carrying region

r = distance between the field point where A is being determined and dv at

the source point.

From Equation (22) we see that the elemental vector potential dA, due to a cur-

rent element Jdv, is in the same direction as T. It is well known from this fact

that the lines of the magnetic vector potential A are circles centered about the

* coil or loop axis. The magnitude of X along such a circle is constant, which means

that A is a function of the spherical coordinates r and e only. Therefore, we know

in advance for this problem that A is the only component of A existing at the field

point. The infinitesimally thin band of current, shown in Figure 4, has only an

azimuthal or component, which is a function of r and 6, and lies on the boundary

between regions II and III (i.e., r=R2). For this current, Equation (21) reduces to

0 , if O <6 or e >2

(6 ,f616=2 2(23)
J (0) , if 6 1 <  

e <  
02

Therefore, Equation (20) has only an azimuthal component and can be expressed as

A= A(r,Oi) = 0 (in regions I through II) (24)

16



When the vector Laplacian I is expanded in spherical coordinates, Equation (24)

can be written as

a_ 2 ___A 3 A cots ______
+ A ) + ) _) = 0 in regions 1 (25)
S2 r 2 2 2 D r 2 2 through IIIt r r r e2 r r sine

In order to solve Equation (25) it is necessary to obtain the general solution in
:'.. 2

regions I through III. Thus, by multiplying Equation (25) by r we obtain

2A 2rA D2A 3A Ar
+ + + cot e- 0 (26)

Dr2  '02 O sin 2

Applying the method of separation of variables, let us assume that A can be

expressed as a product of two functions

A = R(r)G(e) (27)

where R(r) is a function of r only and 0(0) of e only. Substituting this form of

the vector potential A into Equation (26), we have, after separation of variables

d2R(r) 2 dR(r)- p(p+l)R(r) =0 (28a)
2 r dr 2

dr r

17



2 -

d20()+ cot d (p+l) 0() = 0 (28b)

dO2  c O sin2 0

where the separation constant is p(p+l) and p is an integer from one to infinity.

The differential equation

dO dO I m2 I
d20 + cote- + p (p+l) 0 = ] 0 (29)

dO2  dO sin2 e

has, as a general solution,

0()- (0) = P (cos O) +DQ (cos O) (30)
p Pp p p

Comparison of Equations (28b) and (29) shows that in Equation (29) m2  1 1. This

:. requires that m always be unity. The solutions of Equations (28a) and (28b) are

then expressed as

R(r) = R (r) = A' r p + B' r - (P+) (31a)
p p p

O(e) = 0 (0) = C pl(cos O) + DpQ 1(CosO ) (31b)
P P Ppp

The associated Legendre functions of the first and second kind are designated as

pm (cos f)) and Qm (cos 0), respectively. Therefore, the general solution of

p p

18



Equation (25) in regions I through III may be formed from the product of the solu-

tions in Equation (31), which yields

A =R(r)EG(e) = R (r)O (E3) (32a)
p1 p pI

-. ~(' P+ B ) (GpPl(cos 6)+D Q1(cos e)(32b)
rlp p P p

In the spherical case, associated Legendre functions of the second kind are infinite

at cos 6 = +1, and, thus, cannot be included when the region under consideration
. includes the symmetry axis. Therefore, the constant D must be set equal to zero,

p
and Equation (32) reduces to

A p E p AprP+ 1) P (cos 0) (33), ~p=l r ( 1

where A = A C and B = B' C

p p p p p p

The form of the potential in each of the regions (I through III) is determined

from Equation (33). These magnetostatic vector potentials in regions I through III

are:

A =A 1 =I A ( 1rp) P 
1(Cos e) (34a)p--i P

p=l

19



P- A2 r +l--

A1 " =A P 1-- (Cos o) (34c)

I j p

. III = AIII = E r(P+l) J P:cs6 3c

Swhere, for the %1component, Bpl = 0 because at r = 0 the potential must be finite

and, for the A III component, Ap3 = 0 because as r approaches infinity the potential

must remain finite.

At each interface, the basic laws of magnetostatics in Equations (3a) reduce to

boundary conditions on B and H that can be used to evaluate the four constants in

Equation (34). From Equations (18a), the normal component of B across each boundary

must be continuous, i.e., (B2 -B1 ).n1 2 = 0 where the quantity n 12 is the unit outward

normal to the surface. This provides the following boundary conditions which must

be satisfied by the solution in Equation (34) for each region.

Br BrI at r = R (35a)

BrIl =Brl1I at r = R2  (35b)

The normal component of the magnetic field B is expressed in terms of ther

vector potential as

Br (VxA)r  (36a)

20



i (sin e A*) (36b)
er r sin e ee

r ear e r sin 

where B=VxA ia a

r sin a 8p

0A0r sin e

However, because the vector potentials in each region are functions of Pl (cos e)p
we can simplify Equation (35) to constraints on

A, =A at r =R (37a)

A = A at r R 2  (37b)

The second set of boundary conditions is obtained from Equation (18b). The tan-

gential component of H across each boundary must satisfy the relationship

n12 x (H2 -HI) = Is  (38)

21



where J (which equals J(t))) is the real surface current density in the limit ofs

vanishing width between the two regions. Using the relationship B = iH, Equation

(38) may be expressed as

B., B =1 J6) (39)

2 1

Referring to the curl in Equation (36), we can write B as

Br = (xA) - r r (40)

From Equations (38), (39), aria (40), the tangential components in regions I

through III must satisfy the relationships

1 1 1 1

r r i +  r r (rAI) 0 at rR 1  (4 1a)

1 1 b 1 i
ijIr 3r P2 r - r 1 ''a

r T (rAlIl) +  r r (rAil) J(O) 2  (41b)

The g ,rtlra expressions for the potentials in each region (Equation (34)) are

thten .,tihst itutetd into the boundary conditions (Equations (37) and (41)) and solved

or t ht. ntants A . and B * There are four algebraic equations with four

tinw-i'i- ind tht, potent ial in each region can then be specifically determined. The

22



four boundary value equations that must be solved for the coefficients are given

below (where the index p is odd only and understood to take on values from 1 to oo)

It is noted that the current J () must be expanded into a set of associated

Legendre functions in order to evaluate the constants Api and B pi The detailed

expansion is in the section of Reference 7 entitled "Expansion of the Current

(J(O)) in Associated Lengendre Polynomials."

A R - [A P +B R (p+l) (42a)
pll p2R1 p2l J

[ A R+B R - B (42b)
p2L p2 2 - J 3R-(+

A l (P-l) -(p+2) 1 (p+l)R (pl)l

W- [ P2 (P+I)R I - B p2 PRI +12 Apl 1(4c

L p3 2 0 p2 2 p2 2s

(42d)

The solution of these equations to obtain the coefficients yields (a detailed

derivation is given in Appendix B):
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pJ0

- P (Cos 0) ( a

R2 (2 l ( 2+P\ ) (p-i) / 14 2

A p ~ j e (43b)
p2  (2p+i) Rp 1P1 (Cos ~

2 p

A P1i p 12 (Co 0)(43c)

(2p+1)R2 ( P-1 (Cos 0) (2 +1 (P-1) + 2 (p

(co p 22~l (t 2~i~o +(43d

1j R ( 2 p+l) (4d

B p p-

p3  (2plR(-1) R-(2 p4-I) 2+ R(P1 I+
?2+1R 22+) (piP

2~~P 2 ' 1 P+1.l
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The coefficients A piand B pican be determined from Equations (43), and Equations

(34) can now be used to specify the potentials A. A IIand AIIin regions I through

III. The normal (B .) and tangential (Bea) components of the magnetic induction in

regions I through III can be determined, by using Equations (36) and (40), to be:

B(-l (p-1 A1rPp Cse (44a)

B 1 A r sP1)D ine P (Cos 6 4b
rl Plsine 0l P1 6 J

Boil =- [A p2(P+l)r(I-1) pB p2r (2 P~ (Cos 6)(4)
p=l

1 (p-) -(p+2)( l e'4dB [A r ie + B r- (in ePl 'cose)(4d

nI(p 2  1 2

B Z [P B 3rP+J P (Cos 0) (44e)

B =1 B r- (p+) n P 1 (Cos e)(44f)
rII 1 sin e p3 -p-)~ sn )
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The magnetic vector potential, A in the inner region and A in the outer region,

are derived for an infinitesimally thin current band in a homogeneous medium of

permeability ,l' in Reference 7. The coefficients Api (i = 1,2) and Bpi

(i = 2,3), for the vector potentials for the present ferromagnetic sphere problem,

reduce to the coefficients of the potentials in the two regions of the simple current

band problem when the permeability of the sphere p2 approaches that of the surround-

ing medium i" This shows that the solutions of the above ferromagnetic current

problem have the correct mathematical form.

We note that derivation of the solution for the problem of a ferromagnetic

A, sphere surrounded by a coil of finite width is found in Reference 7. See Figure 5

for the geometry of the problem. The magnetic induction for this case is:

BkI - (p+l) Aplr(P-l) p (cos 6) (45a)

p=l 
p

1 1 11BrI sin A plr(P) D [sin pl (cos (45b)p=l 9e P

B'I = [-(P+l) A 2 r(l) + pB r -  2)J P cos (45c)

p=l 
[sin p

B (p-l) B p2

r s A 2r + 6sin 0 (cos 't) (45d)
p.l L r(P+2 )J 5 P
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B-(p+l) A p(P-1) + PB 3 r- P+2) p (cos )

=1~

1 Ipr)p p (Cos 6) (45e)- ( -\ ip-- +3)
p2

p=l

B-" I [Ap (P-' + B p3 i e P1 (cos 0)
BrlI1 sin r (p2 +

1 00 1-iJrK F 6 p1  c

+ 1 snaP CsU (45f)
sin L (p-2)(p+3) J [sin 3 (

ps P(
p=l

•BOI = p B p r - ( p + 2 )  P 1 ( C o s @)I P(45g)

Bl I Bsi Bpr- (p+2)] - sin e P 1 (Cos 0)] (45h)

rTV sin e p=1

The mathematical solution for B p3in terms of known quantities, obtained in

Appendix E of Reference 7, is given by
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B 3(+)R2(P-1) 3 ~ 1 RK-K p+1R (p- 2 ) (p+3)

2 p2

[(p+) ((pK/ P)2)+ 2

S(-P)R~) - [Z][X] (p-) R 2 P1 + (PR2 (4 6a)

-R (4+b

[X

vj 1K R -+
K'- 1 p 3

p (p-2)(2p+1) (4 6c)

lZI ~R 2-(p+l)(4d
([X] R 2 P+R (P+'))

Pi JR 2 K + R

K' -(-2)( +3) p 2 4e
( [X]R 2 P+R 2 - (p+D)(4e
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The numerical values for the other coefficients can be obtained from the equa-

tions

A K (47a)
p3  p

B 2 = B 3 [Z] + K'' (47b)

Ap2 = [X] Bp2  (47c)

ApI = Ap2 + Bp2R1 - (2 p+l) (47d)

pJR3 (p+3) K

B p4 = Ap3 R 3(
2 p+l) +Bp 3 + 1 (47e)

(p-2)(p+3 )

SPHERICAL SHELL SURROUNDING AN INFINITESIMALLY THIN SPHERICAL CURRENT BAND

We now proceed to solve the boundary value problem of a ferromagnetic spherical

shell of outer radius R3, inner radius R2, of homogeneous permeability p 2 f surround-

ing an infinitesimally thin current band of radius RI and having a current

density-J. A constant density J is assumed. Figure 6 shows the four regions of

interest. Regions I, II, and IV have a permeability equal to the permeability of

vacuum P0 which, for convenience, will be labeled pi" The problem's spherical

symmetry suggest that a spherical coordinate system, such as that shown in Figure 1,

be used in the solution.

The details of treating problems of this type with spherical symmetry are dis-

cussed in the previous section of this report and in Reference 7.

30



z

Rl.

92 INFINITESIMALLY
THIN CURRENT BAND

FERROMAGNETIC SPHERICAL SHELL

Figure 6 -Infinitesimally Thin Current Band Surrounded
by a Ferromagnetic Spherical Shell
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The partial differential equation that governs this problem is the azimuthal

component of the vector Laplace's equation.

S = A (r,e) = 0 ip regions I through IV (48)

When the vector Laplacian is expanded in spherical coordinates, Equation (48) can be

written as

2 2
S2 iA cot A A

D 2 + -- + cotA = 0 (in regions I
2 r r-r 2 2 2 e 2 .2

dr r De r r sin 0 through IV)

(49)

The general solution of the equation has the form

Bp 1

A A - + P (cos 0) (50)

where A and B are constants and P (cos 0) is the associated Legendre function of
p p p

the first kind. The magnetostatic components of the vector potential in regions I

through IV are

AZI p (AplrP)p 1 (cos 0) (51a)

0B0A,(,rp+P (Cos 0)(51b)A,:,II z ( Ap2rP + r(P+l)) p (o 0)5lh

P=3
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71

AIII A p3 rP + (P+l) p (Cos e) (51c)
p=lr

0 / B
A IV = E p l4 ) PI (cos 13) (51d)A*IV  p=1l r(P+l)/ p

where, for the A I component, B = 0, because at r = 0 the potential must be finite,

and, for the AIV component, A = 0, because as r approaches infinity the potential

must remain finite.

At each interface, the basic laws of magnetostatics reduce to boundary condi-

tions on B and H that can be used to evaluate the six constants in Equations (51).

The first boundary condition states that the normal component of B acros, each

boundary must be equal to (B2 -B1) n12 = 0. The vector quantity n12 is the unit

outward normal to the surface (in the spherical case r). Thus, the following

boundary conditions must be satisfied by the four regions of the ferromagnetic

spherical shell problem.

B rI = Brl at r = R1 (52a)

BrlI = 9rlll at r = R2 (52b)

Brlll n BrlV at r = R3 (52c)

The second boundary condition states that the tangential component of H across each

boundary must satisfy the relationship

nl2 x (H 2-HI) = s  (53)
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where J (which equals J(e) in our case) is the true surface current density in the
s

limit of the vanishing width between the two regions. Using the linear relationship

B= H, Equation (53) can be expressed in spherical coordinates as:

B02 B61
= (54)

The general expressions for the components of the vector potentials in each

region A (Equations (51)) are then substituted into the boundary conditions (Equa-

tions (52) and (54)) and solved for the constants A and B .. There are sixpi pi"

algebraic equations with six unknowns, thus enabling the potential in each region

to be specifically determined. The six boundary value equations that must be solved

for the coefficients are given below (where the index p is odd only and understood

to take on values from 1 to o).

As in the previous section, the component of the current J (8) must be expanded

into a set of associated Legendre functions in order to evaluate the constants Api

and Bpi. (The detailed expansion of the azimuthal component of the current density

is given in Reference 7).

pA~ R RP+ B p2 R1 (P+l)](5)

[A R2 2 p2 2 [A R p3 2 p55bp2R 2 p -( p+l) p

[Ap 3 R3 + B R (P+) Bp 4 R 3(P+ (55c)
3 p3 3 4
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- p+l)RI(P') -B PR~ (pL+2) +J (p(cRs p (55d)

p

~[AP+1~P) P 3R(p+2)] +k(Ac+)P-1) - B R] -+

L (55e)

1 pB [ BR (p+2)]+ ~-[~ (p+l)R(P-1) -pB R (p+2] 0 (55f)

~Note: J (6) 1 K P (cos 0) 1(0) where K 0 for p ee.
p p p even.

The coefficient A p3in terms of known quantities is expressed as:

1[j(2p+)R-( p+2)l

p3+P1 LxPlR(p+ 2) 1 L(+)(P-1) +px](p+2l
Pl 2 Pi2 12 2 2

(5 6a)

where x] (=1 )R~ +2( (56b)
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P+2)
J P -( Rj (56c)

P (2p+l) e1p(cos e)]

p

The numerical values for the other five coefficients can be obtained from the

following equations

B (57a)
p2  p

B =A [X]  (57b)
p3  p

A . -(2 p+l) + A + -(2p+l) (57c)

p2  2 p3 Bp3R 2

A = A + B R( 2 +l) (57d)
pl p2  p2 1

B A R(2p+l) + B (57e)
p4  p3 3 p3

The coefficients A . and B . can be determined from Equations (56) and (57). Equa-

tions (51) can now be used to specify the potentials Ail AIII AIII, and AIV in

regions I through IV. The normal (B r ) and tangential (B0 ) component of the magnetic

induction in regions I through IV can be determined, by using Equations (36) and

(40) as:

36
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B -1 (P+1)A p 1 (58a)

p=p

B A sin [sin Pp (Cos ) (58b)
Brl f~ sin 0 ApP- ) p co

p=l1

00

Bo [Ap2 (P+l)r(P
-1) p Bp2r-(P+2)] P1 (cos b) (58c)Pel p2 -

00

Brl = A= ri (P1 + B r- (p + 2 )  e
r II P [2 Ao B in P (cos (58d)

B = i = [Ap3(P+l)r(P-1 ) - pBr(p+2) p (cos 0) (58e)BelIl . 1 LP -p 3  
P

00

BrII1 = E si [A p3r(P1) + B 3r(p+2 - [sin 0 Pl (cos 0)] (58f)

00

B - pB r(P+ 2 ) pl (cos 8) (58 g)
p --i p
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]r
1 r- (+2)1 ~

Brv = [Bn r [sin PI (cos )58h)
P-Pp €p

The coefficients Api (i = 1,2,3) and Bpi (i = 2,3,4), for the vector potential of

the present ferromagnetic shell problem, reduce to the coefficients of the potentials

in the two regions of a simple current band when the permeability of the shell 2

approaches that of the surrounding medium Pi (see Appendix C).

Lebedev et al., present the magnetic vector potential due to a dc current I

flowing in a filamentary circular loop of radius r inside a hollow spherical shell

made from material of magnetic permeability .i (in Reference 3 see "The Fourier

Method," page 99). The components of the magnetic vector potential were given as:

A r A =0

A = f(r, = 2T P (4p+3)2  1
Ap _______ p (0)

c (2p+l) (2p+2 ) (2p+l),p-0

r0( p+2 os 0)os
(2p+l) R 1 ) (4p+3) 2]

-- [(2p+l)p+(2p+2)] [(2p+2)p+(2p+l1)] -(R2"(pI(p2(-)

where r R2; see Figure 7.

c 2.998 x 108 m/sec.

Note: Lebedev's equations are expressed in Gaussian units.
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Figure 7 - Ferromagnetic Spherical Shell Surrounding

a Filimentary Current Loop

Although we did not derive this solution, a solution for this type of prohlhT'.

could be obtained by allowing the infinitesimally thin current band in the prec,!il,

problem to degenerate to a filamentary current loop as was done in Appendix B of

Reference 7.

SPHERICAL SHELL SURROUNDED BY AN INFINITESIMALLY THIN SPHERICAL CURRENT BAND

The boundary value problem of a ferromagnetic spherical shell of outer radiL

R.,, inner radius RI, and a homogeneous permeability g2 , surrounded by an infinitt,-i-

mally thin current band of radius R3 having a current density J was solved in

Reference 7. A constant current density was assumed. Figure 8 identifies the f,,

regions of interest. Regions I, III, and IV have a permeability equal to the

permeability of vacuum, Po , which for convenience will be labeled p1 . The problcii'

spherical symmetry suggested that a spherical coordinate system such as that shoin

il Figure ] be used in the problem solution.

The form of 4 he potential in each of the regions (I through IV) was determinc,!

Irom the solution of the vector Laplace's equation in each region. These magneto-

tati jvector potentials in region, I through IV are:
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A, A, I (AprP) PI (Cos (59a)
Ip

0 AB 
12 BAii = A .s[A pp + p I) pl) (59b)

p~1 1  .. r (+ib

4i A A II p 3 j p (Cos (590)
ill = AIpl) (P+l)

PII r

AI =A L (I I p (Cos e) (5 9d)

where for the A I component B = 0, because at r = 0 the potential must be finite,

and for the A IV component A = 0, because as r approaches infinity the potential

must remain finite.

At each interface, the basic laws of magnetostatics in Equations (3a) and (3

ruduce to boUndary conditions on B and H that can be used to evaluate the six con-

stants in Equations (59). From Equation (18a), the normal component of B across Cac ,

oundary must be continuous, i.e., (B 2 -B I ) = 0 where the quantit -) is th

'rit outward normal to the surface. This provides the following boundary conditi'ns

which must be satisfied by the solution in Equations (59) for each region.

Brl = Brl at r = R (60a)

Brl = Brill at r = R2

Brlll = BrlV at r = R3  (()Oc)

4].



The normal component of the magnetic field B ris expressed in terms of the

vector potential as

B r (V7xA) r(61a)

B- 1 sn (61b)
r r sin 30iO~j

e e r e rsine

wher e B3 7 xA
r 2sin 0'6

0 0 A rsin e

1
However, because the vector potentials in each region are functions of P p(cos 0) we

can simplify Equations (60) to constraints on A

A, = A at r =R 1(62a)

A= A at r =R 2(62b)

AIII =AIV atr=R3 (62c)

The second set of boundary conditions is obtained from Eqiiat ion ( 18b) . The

tangential component of Hf across each boundary must satisfy thet r latioslip

n 12 X (1 2-(h 1
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...

where J (which equals J(6)) is the real surface current density in the limit ofS

vanishing width between the two regions. Using the relationship B PAH, Equation

(63) may be expressed as

B e2 B:"~ Be 0 (e) (64)

2 1

Referring to the curl in Equation (61), we can write B as%0

B0 = (VxA)0 = r - [r A,] (65)

(rA + (rA ) = 0 at r = RI  (66a)
12 r 9r P r 9r I

r---r-(rAll) +- - (rA )=0 at r =R (66b)
r r I 2 r 3r II2

(rA ) + I r __ (rAl) = J(O) at r = R (b6c)
1 r 9r IV 1r ar II3(b)

The general expressions for the potentials in each region (Equations (59)) are
then substituted into the boundary conditions (Equations (62) and (66)) and solved

for the constants Api and Bpi. There are six algebraic equations with six unknowns

and the potential in each region-can then be specifically determined. The six

boundary value equations that must be solved for the coefficients are given next

(where the index p is odd only and understood to take on values from 1 to -e). It is

noted that the current J i(0) must be expanded into a set of associated Legendre

functions in order to evaluate the constants APi and Bpi* The detailed expansion is

derived in the section of Reference 7 entitled "Expansion of the Current (J (0)) in

Associated Legendre polynomials."
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A pl.R 1 p [Ap2 R 1 +B p
2 R I-(p+1) (67a)

A>R P +B R -(p+)] FA R +B R -(p+i)l(7b
VP_'2 p2 2 p3 =[ R 2  p3 2(7b

[A33 + R(p+i1 Bp4 [R(P+1)] (67c)

A' [A(p+l)RjPi pB2 R1 (P±1) + 4~[A i(p+I)Ri (p-i)1  6d

- ~[A3 ~iR (-) B (p±2 + 1-[A (p+liR (P-1) - pB p2R 2 (p+2 )} 0

2 (67e)

1 pB Rjp+2 )] ]+ 1 ~[A 3,(p+l)Rp- - pB 3 R_( p+2j]= Jp(e)/Pl(cos 0)(67f)

The solution of these equations to obtain B p3in terms of known quantities is per-

formed in Appendix A of Reference 7. In summary:
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-i f (0) ([X (p+) R (P- - pR, (P') J' (6) (P+1) R(P')
B P 2 p \A212p 1-. -p 2 (68a)

PR21 (p+ i([jx(p+l)RP 1 )-k ([ZIpR 2

-~(p+l)

1XJ (68b)

f' (2 - p (68c)
[([]]P+R 2-(P+)

p~ 1 (68)

p )R 1 (68 e)P p(o ) 3 (2p+l)
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The numerical values for the other five coefficients can be obtained from the

following equations:

BB (69a)
p2 = Bp3 [Z] + J"p (0)

A J (J ) (69b)
p 3  

p

Ap2 [X] Bp2  (69c)

Apl = Ap2 + pR(2 p+l) (69d)

B = A R3( 2p+l) + B (69e)

p4  p3 3 pB3

Because the coefficients A . and B . can be determined from Equations (68) and

(69), Equations (59) can now be used to completely specify the potentials A, AlI ,

AIII, and AIV in regions I through IV. The normal (B r) and tangential (B0 )

components of the magnetic induction in regions I through IV can be determined by

using Equations (61) and (65) as:

B -81 (p+l) (A pr(P-1)) P1 (cos 0) (70a)
p=l

Br sin [Ar(P] sin a P1 (Cos 0))

p=l De p

46



BCl =P- p 2A(p+l)r (P- 1 ) rP+2) Plp (cos 9) (70c)

1n 1A p2 1 Bp

,p=I

B = [Ar sin 1 + B r- (s in 6 P (cos a (70d)
rIl 1~ sinO 0 pp2 DeJ

B6II= - p A 3 (p+l)r(P-) - pB p3r ( P+2)J p (cos e) (70e)

1 A (p-1) -(p+ 2 )] - 1

Brl[ sinA-- p~r + B r sine P (cos U (70f)
rIII P1 sinO p3 p(

7p'

B pB r r(p+2)) Pl (cos 0) (70g)

___1_= p~~ / /P

0 IV p=l p

Bl = I rsn ( - sin 0 P (cos 6) (70h)
rIV sin 0 p 4 p

In Appendix C of Reference 7, the coefficients Api (i = 1,2,3) and Bpi

(i 2,3,4) for the vector potentials for this ferromagnetic shell problem were

,;hown to reduce to the potentials in the two regions of the simple current band

problem when the permeability of the ferromagnetic shell P 2 approaches that of the

surrounding medium pI. This showed that the solutions of that ferromagnetic current

probleim had the correct mathematical form.
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SPHERICAL SHELL WITH INTERNAL AND EXTERNAL INFINITESIMALLY

THIN SPHERICAL CURRENT BANDS

We now proceed to solve the boundary value problem of a ferromagnetic spherical

shell of outer radius R inner radius R2, having a homogeneous permeability P 2'

surrounded by an infinitesimally thin current band of radius R4 having a current
density J 2 and surrounding an infinitesimally thin current band of radius R1 having

a current density Jl" A constant current density is assumed for both bands. Figure

9 identifies the five regions of interest. Regions I, II, IV, and V have a

permeability equal to the permeability of vacuum, p0 , which for convenience will be

labeled p1. The problem's spherical symmetry suggests that a spherical coordinate

system such as that shown in Figure 1 be used in the problem solution. The govern-

ing differential equation for A when homogeneous and linear materials are considered

is, from Equation (17),

= (71)

From Equation (22), we see that the elemental vector potential UA due to a

current element Jdv is in the same direction as J. It is well known from this that

the lines of the magnetic vector potential A are circles centered about the coil or

loop axis. The magnitude of A along such a circle is constant, which means that A

is a function of the spherical coordinates r and 6 only. Therefore, we know in

advance for this problem that A. is the only component of A existing at the field

point. The infinitesimally thin bands of current shown in Figure 9 have only an

azimuthal or p component, which is a function of r and 0, and lie on the boundaries
between regions I and II (i.e., r = RI) and between regions IV and V (i.e., r = R4).

These currents can be expressed as:

0 , if a < or 0 > e2
2(72)

e if 0l< 0 < (2

48



frB
B
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Figure 9 - Ferromyagnetic Spherical Shell with Internal and

External Infinitesimally Thin Current Bands
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OF

0 ,if 6 < 6' or 6 > 62
1 2

j2 (73)
if el < 6 < e2

Therefore, Equation (71) has only an azimuthal component and can be expressed as:

kA *A (r,O) = 0 (in regions I through V) (74)

When the vector Laplacian * is expanded in spherical coordinates, Equation (74)

can be written as

2 22A + JAp' 2A ' coeA A

+ +Z cot ' - = 0 in regions 1 (75)
r2  r r r2 302 r2  M r2 sin2 0 through IV

To solve Equation (75), we follow the procedure given on page 17. The general solu-

tion of Equation (75) in regions I through IV may be formed from the product of the

solutions in Equation (31) which yields

A = R(r)O (6) = R p(r)Op (0)
p=l

(76)

E (A<A'prp -+ )( p1 (cos 0) +DQI (Cos )

p=l r ( p + I )  (Cp p p(c

50



In the spherical case, associated Legendre functions of the second kind are

infinite at cos 0 = + 1, and thus cannot be included when the region under considera-

tion includes the symmetry axis. Therefore, the constant D must be set equal to
P

zero, and Equation (76) reduces to

A( \p + (cos 0) (77)P= p P r ( p + I  P

where A = ApC ,and = BpCp... p pn B p p

The form of the potential in each of the regions (I through V) is determined

from Equation (77). These magnetostatic vector potentials in regions I through V

are:

A, =Al [A Pr PI (cos 0 (78a)

I p=l rl (P+I

All I  A A r2 + + J P (cos C)

r 13 (p+l) p

P=l r

AIV :A,IV A p3 r + r(p+ )  1 (Cos

A A[Ap r + y P~ (Co (78d)

IV 4JIV p=l r(p4l r (p~l

AV Aj ) = [724Ijl P1 (cos 0) (8
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LI

where, for the A. component, Bpl = 0, because at r = 0 the potential must be finite

and, for the AV component, A = 0, because as r approaches infinity the potential

must remain finite.

At each interface, the basic laws of magnetostatics in Equation (2a) reduce to

boundary conditions on B and R that can be used to evaluate the eight constants in

Equations (78). From Equation (18a), the normal component of B across each boundary

must be continuous, i.e., (B2 - B " n12 = 0 where the quantity n12 is the unit out-

ward normal to the surface. This provides the following boundary conditions which

must be satisfied by the solution in Equations (78) for each region.

SBri = Bri I  at r = R1

BriI  = B r1 I at r = R2

(79)

Briii = Bri V  at r = R 3

Brl V = Brv at r = R4

The normal component of the magnetic field B is expressed in terms of ther

vector potential as

B = (VxA)r

(80)

B I a (sin Al)
r n sin 0 T8
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r r sin

rr

0 0 Ar sin

However, because the vector potentials in each region are functions of Pl (cos )
p

we can simplify Equation (79) to constraints on P,

A =A at r = R (81a)

A A at R

AII = ITT ar= 2 (8 1 b)

AIII =AIV at r = R3  (81c)

AIV = , at r = R (81d)
IV 4

The second set of boundary conditions is obtained from Equation (18b). The

tangential component of li across each boundary must satisfy the relationship

1 2 X ( I2-H) = Js (82)

where J (which equals J('))) is the real surface current density in the limit of5

vanishing width between the two regions. Using the relationship B !IH, Equaition

(82) may be expressed as
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B2 BI
2  J() (83)

V2  1.1

Referring to the curl in Equation (80), we can write B as

B 0  (7xA)0  r r rA J (84)

From Equations (82) through (84) the tangential components in regions I

through V must satisfy the relationships:

__ r (rA +-r- (rAl) = Jl(0) at r =R (85a)

-- 3r (rAlll) + 0 at r = 2  (85b)

2 ir (rAIv) 1

1-r 3r 2 r ( = 0 at r = R3  (85c)

1 13 1 13
-1 r r (rAv) + - -r (rAv) = J2 (0) at r =R (85d)

The general expressions for the potentials in each region (Equations (78)) are

then substituted into the boundary conditions (Equations (81) and (85)) and solved

for the constants Api and Bpi* There are eight algebraic equations with eight

unknowns, and the potential in each region can then be specifically determined. The
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eight boundary value equations that must be solved for the coefficients are given

next (where the index p is odd only and understood to take on values from 1 to cJ
It is noted that the current J MO must be expanded into a set of associated

Legendre functions in order to evaluate the constants Ap and Bpi The detailed

expansion is derived in the section of Reference 7 entitled "Expansion of the

Current (J (6)) in Associated Legendre Polynominals."

A Rp [A RP +B R-(p+l)l (8 6a)pl 1  L2 P 1  p2 1  j

p 2 2R +BR Pl [A Rp + B R-(P~) (86b)p2 [ 22p3 2 p3 2 J

[A 3 RP+ B R- (P+l)] rp3 4 R + B R-(P+l) (86c)

[A 4Rp + B 4 R- (P~1)] [B 5R- (p+l) (8 6d)

- 1[A )R(P-) -pB R- p+2] + ~-1[ (p+l)PR(P1 -...) R2 (O)] (86e)

- Ili- [A ,2 1[p 2(p+l)R(P )-pB 1R- (P+2)]+ 1-[A(p+l)R(Pl1)-PB R-(p+2)] 0 (86f)
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+ L- [pRjP ~B +[A (-lR~ 1  pB R(+) - ____

P1 Pp~ 4 (p+1 p P (Cos (8)h

The solution of these equations is performed in Appendix D. In summary:

Ap 2= ) (P 1 ) P (Co) [X1 (87a)

4 p

B J 1 p6 ETI (87b)
p2 (2+l -P 12p (Cos e)

A 3 = 2(87c)

+ L2 ((p+l))1R(2p~~l)

A p3 B pW] + [X]Es]= IZ] (87d)

RP[X[S_] - REXl[S][T] - [Y1[AIRP -YR Pl

p3 2 2 (l 2 2 (87e)

Rp [w][T] -Rp)- RP [W]
2 2 2



- A R( l + B -A R 2 )(8 7f)p4 ~ p 3 3  p3  p 4 3

B -A t((.l)) R + B + "12()( 8 7 g)
p5 p4 \ p) 4 p4 P 1(Cos O)P R (p''

p 4

A = A + B ( 2 p+l)(8h

AP' p2 +Bp 2 R1 (8h

-. where [T] =2 2(8ili 2 +L.(P1)) R 2p+l)}
.4.p

[A] (il) (87]))

[w] 2 4~1 (8 7k)

L 1(2 p+l) (87Z)
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Because the coefficients Api and B can be determined from Equations (86) and

(87), Equations (78) can now be used to completely specify the potentials AI, AlI,

AIII, and AIV in regions I through IV. Then the normal (B r ) and tangential (Be)

components of the magnetic induction in regions I through IV can be determined by

using Equations (80) and (84), to be:

B = [(p+l)Aplr(p-lIP (cos 0) (88a)

Pasl

B s A r 3 in 0 (cos e (88b)
rI sin 0e PTa[

s (l)rp (cs)

B1 _(p+)Apr(P-1) + pB r-(p+2) pl(Cos 0) (88c)
OnI E L- p2 p2  J p

sin r( 4 ) B p2 sn l )

r= Z [A)rP + (+L2) in 0 P (Cos e)(88d)

i pB 3r (p+2)] P I(Cos 0)(88e)

in P 1 (Cosn t)) (88f)

t ill P

Ir \" I P1 I (cos O 8f

58

lll I ... ...1-'l . . . . . . " -- . . .. I I i 
"



B = [-(p+1)Ap~r(pl') + pB r- (p+2  P 1(Cos J) (88g)

B - 1 P r(P1) + B 1- [Sin 8P(C°S 0) (88h)
rIV sin 8P r (p+2) DO ~8p

[..

Be =X [pr(p+2)] P 1(Cos 0) (881)

p=l [~~

BrV sin [B 5 r- -(2 sin 0 P p (cos 0) (88j)

In Appendix D, the coefficients Api (i = 1,2,3,4) and Bpi (i = 2,3,4,5) for

the vector potentials for the present ferromagnetic shell problem reduce to the

potentials in the two regions of the simple current band problem when the permeabil-

itv of the ferromagnetic shell p 2 approaches that of the surrounding medium i]

This shows that the solutions of the above ferromagnetic current problem have the

correct mathematical form.

SOLUTIONS FOR PROLATE SPHEROIDAL BODIES

SOLID PROLATE SPHEROID OR PROLATE SPHEROIDAL SHELL IN A UNIFORM
FIELD OF ARBITRARY DIRECTION

Important problems relating to determining the magnetic induction for

spheroidal ferromagnetic bodies in an external magnetic field have not been widely

reported on in the literature or in text books. The solutions for these types of

boundary value problems can be obtained by using a procedure similar to that used

3,4,5for spherical bodies by determining the solution to Laplace's equation for the
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magnetic scalar potential. Constant external field problems, solid and shell, were

solved and programmed on the digital computer by Nixon of the Center, for the case
6

of an arbitrarily oriented external magnetic field. The solutions found in

Reference 6 were presented in Cartesian coordinates. The problem of, for instance,

finding the magnetic induction for an infinitesimally thin current band surrounding

a spheroidal shell 8 can be generalized to include an external magnetic field.

Linear superposition may be applied to find the solution in this case. Therefore,
in Appendix E the Cartesian expressions

6
. were converted to prolate spheroidal

coordinates to be compatible with other problem solutions in this section of the

report.

SOLID PROLATE SPHEROID SURROUNDED BY AN INFINITESIMALLY

THIN SPHEROIDAL CURRENT BAND

For the case of the prolate spheroidal bodies
8 '9 the equations given in the

Basic Equations section of this text apply. The governing differential equation

for A when homogenous and linear materials are considered is from Equation (17).

_p --(89)

where the general expression in prolate spheroidal coordinates for a current density

jis

J= J e +J (90)

As previously discussed (see page 16), because the current has only an azimuthal or

, component, A has only an A. component. For the spheroidal problems considered in

this report, the current band is assumed to be infinitesimally thin and the

governing differential equation for A in each region can be expressed as
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iI

{sn n ( + [s ineA = 0 (91)

Using the method of separation of variables, the solution to Equation (91) is

A = [A P (cosh n)+ B Q (cosh rfl

(92)

x [A' Pl(cos e) + B' Ql(cos 0)]

where Pm and Qpm are the associated Legendre functions of the first and second kind,
p p

respectively.

For the prolate spheroidal system, the associated Legendre functions of the

second kind are infinite at cos e = +1, and as such cannot be included in a general

solution for a given region which includes 6 = 0, or 6 = Tr. Therefore, in our case,

the constant B' is set equal to zero. Equation (92) reduces to

A [k 1 (cosh q) + k Q I(cosh r) P I(Cos 0)(93)

p=l

where k and k2 are constants (k1 = AA , k2 = BA'). When the substitutions [ =

cosh r and v = cos 0 are made in Equation (93), A can be expressed as

A = [kP 1 ) + kQ'(C)] Pl(v) (94)
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This is the general form of the psi (P) component of the vector potential that will

be used to determine the potentials A in each region.

The problem of a solid ferromagnetic prolate spheroid surrounded by an

infinitesimally thin prolate spheroidal current band shown in Figure 10 was solved

by Purczynski.
10

In this case, the permeability of the solid spheroid is 112 and the boundary of

the body is determined by T = i constant. The permeability po of a vacuum that

is external to the spheroid is denoted by p1i1 The current band which lies in the

boundary between regions II and III is denoted by n - = constant, and the con-

stant current density flowing in the band is J.

For completeness, Purczynski's work'0 is presented in this text in our nota-

tion. The form of the components of the vector potential A in regions I through

III is determined from Equation (94). These magnetostatic vector potentials in

regions I, II, and III are:

A = I [Appl( )] Pl(v) (95a)

p=l

AA 1PI B [P I~ + D4~() P1(v) (95b)

p=l

AV 00 E o P1 (v) (95c)

p=l

where = cosh n and v = cos 0.

We note two constants were set equal to zero because the potential must be

finite in each of the regions I through III and approach zero as E - - in region III.

The remaining constants are determined from the boundary conditions

B =B at q- (96a)
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Figure 10 - Ferromagnetic Prolate Spheroidal Solid Surrounded by an
Infinitesimally Thin Current Band
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B =IIB TI at n TI (96b)

B6 1 1B6 1 at~ ~ (96c)

B 0 atflnl (96d:)

We note that Equations (96) can be written a&

A = A Il at T'= T)2  (97b)

I a ( 2_V2)

(22) 2_1) A 1 I -- ~ ~):Gp )(9
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_l) A 5 _l)111

____ \ 1 _= (97d)

The general expressions for the potentials in each region (Equations (95)) are then

substituted into the boundary conditions (Equations (97)) and are solved for the

four constants. Because there are four equations with four unknowns, the potential

in each region can be determined. The four boundary value equations are presented

below. The index p in the summation sign has both even and odd values and takes on

values from 1 to o. It is noted at this point that the current density JP(O) must

be expanded into a set of associated Legendre functions to evaluate the vector

potential. The detailed expansion is presented in Reference 8.

Ap P [BPI(D1 ) 1 DQ( l)]p(l ) (98a)

[Bppp(P2) + DpQp ( 2 )]Pl(v) = [EpQl ( 2)]Pl(v) (98b)

-(1 a(CV2) [E p pJ

22

+(l_11 [B [(2) Pl( ) + D-Q'() P (M] = (e)

1 a2 V 2:

(98c)
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)P[l () + DpQ'(E)IpI(V) P

a (C'-V2) 
1

j'\ (C2_1'[2 ApP1(C)jlp'V) I I (98d)

If we make the following substitutions

[A ) 2  
(99b)

and perform simple algebraic manipulation, the four boundary conditions 
can be

simplified to:

A P 1(l B BP 1 ( ,) + D Q 1 ( (10O0a)

PP2)+ DP Qp(E 2) =PEQI,( 2)(b)
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i [E pQ"\) +  IBPA( 2 )+ DQ(C 2)= Jp)12 (100c)pp (C2)

p

(1i [pA(p + DQA~) p = AP'' (100d)

!* The solution of these four simultaneous equations to obtain constants in terms of

known quantities gives

~~~ 2) [-2) - _

(Qp p M (2) - F (El) P-'((C) (~aA = \ p  p 2 , (101a)

p=a
H1 J(O~(P2 Qp

B p 1 2)p 1(V) ) (101b)
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L2 1 2(1

p A pl (1

1 -

IPP

SPP2 PpJ ()a( (Y P_____ )

E D( ) a 2 
ld) )

[ p( )  Pp

. \L P' L 2)'- p\- (11

p.p

pJ( (P2 2)

-1 @2 - 2l ic)

B p 1>

We note that when 0 2 is allowed, in the limit, to approach Pi. this solution reduces

to that of a current band in vacuum. We also note that the solutions are not in the

identical form of those given in Reference 10.

68



The magnetic induction B can be determined from

which gives:

B E 1-N) 2) (A PI($1)PI )  (I02a)p--I a ( 2_ 2) -2
V  

\ P P -

B y 1 /l\2_a( - C ) [ (C- 1) (A A (2)P v (102b)

BjI _____ i.v) 1 (VB pP1 p + 1 (102c)
p= a(2_V2)

B= ( 221 B (' ) + DpQ ( P(v) (102d)
p=1 a ( 2_V2) L pPp +  p

B___ L_ [(, 2)'B _l E Q ( PV) (102e)
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B 1 _F(2) (E 1  P() 1 (1 02f)
p=la

PROLATE SPHEROIDAL SHELL SURROUNDED BY AN INFINITESIMALLY THIN

SPHEROIDAL CURRENT BAND

We now proceed to solve the boundary value problem of a ferromagnetic prolate

spheroidal shell of homogeneous permeability p 2 surrounded by an infinitesimally

thin prolate spheroidal current band of constant current density J. The geometry

of the problem suggests that a prolate spheroidal coordinate system, as shown in

Figure 2, should be used in the solution. Figure 11, a cross section of the

problem geometry, identifies the four regions of interest. The boundaries of the

prolate spheroidal shell are determined by n = constant and i = n2 = constant.

The constant current lies in the boundary q = r3 = constant. Regions I, III, and

IV have a permeability labelled 1i1 Ampere's law states that

x H J (103)

and, because B = 0, the induction B must be the curl of some vector field A.

The governing differential equation for A, when homogeneous and linear materials

are considered, is, from Equation (17),

v= P (104)

The general expression in prolate spheroidal coordinates for a current density

is

J e J0 + e (105)
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Figure 11 -Ferromagnetic Spheroidal Shell Surrounded by an
Infinitesimally Thin Current Band
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In the problem presented herein, the current density has only a psi (P) component

[J1 (6) %], which means that the vector potential has only a psi component A e

The vector potential A = %e% is a function of the prolate spheroidal coordinates

ri, and 0, i.e.,[A=A(fO)]. The constant current density, which lies on the

boundary between regions III and IV, can be expressed by the function

0 if 6 < elor 0 > 61 2

(j e (106)

1 J(0) if a 1 < e < a 2

where J,(6) is equal to a constant J along n = r1 for 6 < e 6 .

Therefore, Equation (104) has only an azimuthal component and can be expressed

as

A - ) 0 Iin regions I (107)
A A( 0 through IV (

When the psi component of the vector Laplacian 4i A is expanded in prolate

spheroidal coordinates, Equation (107) can be expressed as (see Appendix A)

[ u Ao(sin 6 A 0 (108)

n(sinh ] [ Ti + s in s 3

(in regions I through IV)

Applying the method of separation of variables, let us assume that A can be

expressed as the product of two functions
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= H(cosh n) -(cos 0) (109)

where H(cosh q) is a function of cosh n only and G(cos e) is a function of cos 0

only. Substituting this form of the component of the vector potential A into Equa-

tion (108), we have, after separation of variables,

d 2H + coth n - (p(p+l) +sinh 2  ) H = 0 (110a)

d2G + cot 6 -G + P(P+l) 2 G 0 (llOb)
dO sin 0

where the separation constant is p(p+l) and p is an integer from one to infinity.
It is well known that differential equations of the form

d'H + coth n dH -p(p+l) + 2 H, =0 (llia)

d 2  dsinh 2 r1

have the general solution of the form

H' = ClPm(cosh q) + C2 Qm(cosh n) (lllb)

where C1 and C2 are constants. It is known that a differential equation of the

form
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2 + cot dG + Ip(p+l) - m 2 0 (112a)d02 ct sin2

has the general solution of the form

G = C3P (cos 0) + C4 Q (cos 0) (112b)

pm n

, where C and C, are constants. The associated Legendre functions Pm and Q are of
3 p p

the first and second kind, respectively. Comparison of Equations (110), (111), and
2

(112) shows that in Equations (111) and (112), m =1. This requires that m always

equals unity. The solutions of Equations (llOa) and (l10b) are expressed as

H(cosh n) = A P (cosh n) + B Q (cosh ni) (113a)
p P

G(cos 0) A P 1I(cos 0) + B Q (cos 0) (113b)
p p

The general solution of Equation (108) may be formed from the product of solutions

to Equations (113a) and (113b) which yield

A = H(cosh q) G(cos 0) = H (cosh ii) G (cos 0) (114)

7p=
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A= r2 LA P(cosh n) + B Qlos T)

(115)

x A' P'(cos 6) + B' Q 1(cos 6)]

[ p

For the prolate spheroidal system, the associated Legendre functions of the second

kind are infinite at cos 0 = +1 and, as such, cannot be included in a general solu-

tion for a given region which includes 0 = 0 or 0 = 7T. Therefore, in our case, the

constant B is set equal to zero. Equation (115) reduces to

[K P 1(cosh n) + K Q I(cosh TO) P 1(Cos 0)(1)
p=1

where K and K2 are constants (K1=AA' , K2=AB'). When the substitutions i - cosh

and v = cos 0 are made in Equation (116), A can be expressed as

A [K I [KP I + K 2Q 1(o)] P'(V) (117)

p=l P

This is the general form of the psi component of the vector potential that will be

used to determine the potentials, A , in each region.

The form of the component of the vector potential A. in regions I through IV is

determined from Equation (117). These magnetostatic vector potentials in regions

I through IV are:
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A 2.1 P [ P

[= BP'( + C QI(O] P'(,))A II P p
p=l

(118)

C0

Alp 1 = i [DpP1 (E) + E Q1(E)I Pl1 ))p=l P P P

A p IV [Fi ( ) Pl(v)

BIause the potential must be finite in each of the regions I, II, and III and

approach zero as --* in region IV, the following constants were set equal to zero.
1 1

I. For A-, the constant associated with Q1 (E) P l(v) was set equal to zero

Q 1() at +
p

2. For A the constant associated with Pl( ) P 1v) was set equal to zero
1p p

buc () * j a s - wp

(We note Qp(&) - 0 as C -4 co)

The constants A B p, Cp Dp, E and F are to be determined from the boundary con-

ditions. At each interface, the basic laws of magnetostatics (Equations (3a))

reduce to boundary conditions on B and H that can be used to evaluate these six
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constants. The normal component of B across each boundary must be continuous, i.e.,

(B2 -BI) n = 0 where the quantity n12 is the unit outward normal to the surface.

This provides the following boundary conditions which must be satisfied by the solu-

tions given in Equation (118) for each region.

B I = B i I  at n-- (119a)

B nll at q 2  (119b)

11

B T I  B at q n 3  (119c)

The eta (r) or normal component of the magnetic field (BT) is expressed in terms of

the vector potential as

BTI (VxA) n e 1e ( 3 )
23 3

(120)

1 D Fl2) Aj

where B = V x A

1

a(sinh 2 n + sin 2 O)(sinh n sin 0)

(Note: Above equation continued on next page).
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~(ih f in )~(sinh 2 Tl + s in 2  /e) sinh Tls in 6

a a

0 0 A. sinh sin 6

and1

=cosh nl, e1 I e 2 =a(sinh 2 Tn+ s in 2  a) a(E2 ,2)

'v cos 0, e3  a sinh Tj sin 0

However, because the vector potentials in each region are functions of P 1(V), we
p

can siplify Equation (119) to constraints on A at the interfaces:

A = A at r~=(121a)

A = A at n~ n (121b)

A i= A at n (121c)

The second set of boundary conditions st-tes that the theta (0) or tangential com-

ponent of H across each boundary must satisfy the relationship

n 12 x H 235l) i (122)
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where j (which equals J (e)-) is the real surface current density in the limit of
S

vanishing width between the two regions. Using the relationship B = pH, Equation

(122) can be expressed as

B B
B2 e1 = j (0) (123)

112 11

Referring to the curl in Equation (120), we can write B in the form

B= (VxA = a 2_a A (124)

1J 13 a (e_2) L k

From Equations (123) and (124) the tangential components of B in regions I through

IV must satisfy the relationships:

d 9

(125a)

79



a 2_V52)

2

(T a 2p2) a( f K(125(b)

1

2 _- 
3 ( )

=1 (E3v~ (125c)

The general expressions for the potentials in each region (Equation (118)) are then

substituted into the boundary conditions (Equations (121) and (125)) and solved for

the six constants (Ap, Bp, Cp, Dp, Ep, and F p). Because there are six equations

with six unknowns, the potential in each region can be determined. The six boundary

value equations are presented below. The index p in the summation sign has both

even and odd values and takes on values from 1 to -. It is noted at this point that

the current density J1 (0) must be expanded into a set of associated Legendre
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functions to evaluate the constants in the vector potential (Equation (118)). The

detailed expansion is presented in Appendix B of Reference 8. The six

expressions for the boundary conditions are:

Ap P (C,)P (v) = [BP + P1 (V) (126a)
p p [ pPOO +) Cpp~c1)J

12( ) 2) ppp p p

1C2 BP (' P + 11
Pa 2_V-) )

1(126b)

BP 1'(2) + CpQ1)P(V) = [DpP1( 2) + E Q( 2) P 1() (126c)

I a (2_V2) Kt

~(1) 1 ~ [(t2) ( i + C( )) pl(v))]S 2-i BP 1(C) + C QIp ,

P =a2_22 (126d)
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[D pP 1(C 3 ) + Epl(3]P'(v) =FpQ ( 3) el (V) (12 6e)

KG P (v)

a J2(1) - 2
2  

Q 1(

(126f)

* If we make the following substitution

1-2 2 = P ( EQl) +EQ ) C (128)

and perform simple algebraic manipulations, the six boundary conditions can be sim-

plified to:

GP1 1M

a- BPQ_.1 ) (126f)~
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( -) PA + (- AP"°( (129b)

BpP ) 1  DP 1 (E2) + EpQ1
2 ) (129c)

.

1)[DP (2)~ + p (') (p) [Bpp"( .) +CQA (E2)] (129d)

Dp P( 3) + EpQl( 3) FpQ 1 3) (129e)

- 2V+ 2+ P3 ( ) (129f)

where j _) = 2P
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The solution of these six simultaneous equations to obtain E in terms of known

4- quantities gives: 
P

X3 [xjllpA 2) L 1,I A (1 pA

E= (130a)

where [xIJ p 1). 1 l)/ (130b)( 

1--

2). •

[P( 2) (i0Oc)
[x] Pp( 2) + Q'2

K G P (v)
Sp(0) P p  for (v= cos O) (130d)

a ( 23-v22)l

il 1 8)

3l = { P (130e)

p _ _8 - 3)
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- (13Of)

xp1 ( 2) + Ql( 2)

The numerical values for the other five coefficients can be obtained from the

following equat ions:

C J l + E [z] (131a)
p p p

B = [x]C (131b)
p Exrp

D = (131c)
p p

A =B + C (I) (131d)
p p p Ip ,I

F 1 + E (131e)
p 1Qp (C3)

Because the six coefficients can be determined for a specified problem from Equa-

tions (130) and (131), the potentials A A A and A IV, in regions I
IPX' 411' iIII IiV

through IV can be completely determined. The normal (B ) and tangential (Be) to
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the surface n = constant (or = constant) components of tne magnetic induction in

each region I through IV can be determined by using Equations (120) and (124), to be:

B01 1 [2_A pl()p( ] (132a)
a= a( -2) -  L  p PJ

F L ii

BI = - 1[(.v2) ApPp()Pp(v) (132b)

p=l a 2 [ 2) ( -2

p-- a _, [(E2)! ( P P1(M + C Q1(F-P1(V) (132)

p=l a (2_v2)

B E 1 3 [BpP_,2) (P ) + CpQ (P 1(vl (132d)

0111 p= a(E2_,2) 3 L pp p p

_1l  1 i F1 i- (DpPp() + EQ'()) pp(v) (132f)
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B eiv( )Pl() (1 3 2 g)

p=l a( 2_V2) p p

B 2)' (1Thqly -V (Q 1 G)L(132h)

PROLATE SPHEROIDAL SHELL SURROUNDING AN INFINITESIMALLY THIN
SPHEROIDAL CURRENT BAND

We now proceed to solve the boundary value problem of a ferromagnetic

spheroidal shell of homogeneous permeability p2 , surrounding an infinitesimally

thin prolate spheroidal current band having a constant current density J. Figure

12 shows the cross section of the problem geometry. The coordinate system shown

previously in Figure 2 will be used in the solution. The boundaries of the prolate
spheroidal shell are determined by p = i3 and n = n2 . The steady state current

lies in the boundary n and between 01 < 0 < 02" As in the previous problem,

the constant current density has only a psi componenc J (6)e and thus the vector

potential has onl- psi component Ae - The vector potential is a function of the

prolate sphero - coordinates p and 0. The constant current density is expressed

by Equation (106) when the boundary n is changed to D = nI '

The governing partial differential equation has only a psi component and is

given by

TAA = 9,(,0) = 0 (in regions I through IV) (133)

When the vector Laplacian * A is expanded in prolate spheroidal coordinates,

Equation (133) can be expressed as (see Appendix A of Reference 8)

i (sinhAA )=+ (sin A] 0 (134)
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J(O))

-q=-q I INote

=cosh~

v Cos 0

Figure 12 -Infinitesimally Thin Current Band Surrounded by a
Ferromagnetic Spheroidal Shell
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Adopting the following notation

= cosh n, V = cos (135)

and following the logic presented earlier, the solutions for A in regions I

through IV have the general form

A =I [K +K PIIG) (136)
, I2Q pp=l pp)

The form of the components of the vector potential A in each of the regions

I through IV is determined from Equation (136). These components of the vector

potential in each region are:

A =PP IP1() (137a)

p=

P=l

A = 0 IP(4 + KQ1 Pl(v) (137b)
p=l

A 00 L P 1 +M Q 1( lV)(17I p 1 Ip p p

A ,IV NP=(1 ) Ll)(17d

The P functions are the associated Legendre functions of the first kind of degree
p 1

1 and order p, and the Q functions are associated Legendre functions of the
p

second kind.
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At each interface, the basic laws of magnetostatics reduce to boundary condi-

tions on B and H(see Equations (119) and (122)) that can be used to determine

related boundary conditions on A

A =A T) (138a)

A A TI T (138b)

2f
A A T I3(138c)

L i a (2_3,2!
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= ( ') (~~ 2) -~ [ (2 1) A ] ( 8e

1)

- -CI2 _1 A .I
a2 (t2 2) 3C=~ 13f

1 - I 1-2 i

a 3-V (~ + KOC=.lP (V (1389f)
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'r p l + P P D P lV )I

___1) 
(H2 ~ Pi i Pl v)~v

119b

I pp C2 + K Q ( 2  p] P (V) = L P ( 2) + M Q'C P( Y p(v) (139c)

11 (2 p p p )p v

2 
:C2



'33

(~~~~Y) ~1 !(1v) Lj2) (LP() + M Q~() P>U1(3f

if we make the following substitutions

P A~ 2_) (140)
p

QA I) = [ l(o (141)

and perform simple algebraic manipulations, the six boundary conditions reduce to:

H P 1~ 1 lP(I + KQ1(142a)
pp p P pp NP~p

I1\I + \'1\ = p()(V) (142b)

k)1\1 PW1 KQ%)k)pp P 1(v)
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I P(C + K Q'(% L LP1 ( 2  + 1 (2 (142c)

L~- p C + M pQA( )= )(p'( + KpQ"c(2  ) (142d)

L~ P ) + M Q 1 Qir (142e)
p p 3 p p(3%) ' N~s 3)

( )NQ"(E3) =(i- + M ty (4f

it should be noted in the above equations that the current density J()was

expanded into a set of associated Legendre functions to evalute the constants in

the vector potential components (see Appendix B of Reference 8).

The solution of these six simultaneous Equations (142a) through (142f) to

obtain L pin terms of known quantities is:

L Jp~;) (143)
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whre (8) = (146)

P ( 1 p (147)

p p 2)(y

[KPG P

(e) p pJ (148)

p p
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The numerical values for the other five coefficients can be obtained from the

following equations:

K = (149)
p p

M = Lp[U] (150)
P

I J L[V] (151)
p p p

3) (152)
N =L --- +M

p P Q 1 P

Ip

KQ 1 )

H P + P(I ) (153)
p p P~

The components of the potential A in regions I through IV can be determined

because the coefficients Hp, Ip, K, Lp, Mp, and Np can be calculated for a speci-

fic problem. The normal (B ) and tangential (B.) components (to the surface

q = constant or = constant) of the magnetic induction in each region (I through

IV) can be determined by using Equations (120) and (124), to be:

B~l- [(211 HpPl( ) P 1 M (154a)

1- 
p I1 1
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B =III a )( Ii M 1(V (154b)

B ~ a~ ( 2 v) p~~ p v-

x(IPW) + K Qi(C)) P1(v)

+ KQ' )p '( (154c)

001 a
0111 IT /9- [- 2 )

p=l a -V 2

x (L P' + M Q' ) P1(v) (154e)
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1I

x lyl( + MQ1 (Q )P1(v)] (5f

B 00 1
p=l a (2_v2) L

x(N'Ql( ) P1(v))] (5g
p-1

INIIj i N Q N ( (154h)

p=l a ( 2 _V )) avp

PROLATE SPHEROIDAL SHELL WITH INTERNAL AND EXTERNAL INFINITESIMALLY
THIN SPHEROIDAL CURRENT BANDS

We now proceed to solve the boundary value problem of a ferromagnetic prolate

spheroidal shell of homogeneous permeability P2 with internal and external,

infinitesimally thin, prolate spheroidal current bands of constant current density

11and J 2  respectively. The geometry of the problem suggests that a prolate

spheroidal coordinate system as shown in Figure 2 can be used in the problem solu-

tion. Figure 13, a cross section of the problem geometry, identifies the five

regions of interest. The boundaries of the prolate spheroidal shell are determined

by n = 2 and n = n3, constants. The direct currents lie in the boundaries n = f4,

and n = T1, constants. Regions I, II, IV, and V have a permeability equal to vac-

uum P , which, for convenience, will be labelled P In the problem presented here,

the current densities have only a psi (i*) component [J e(O).&], which means that the

vector potential has only a psi component A The vector potential [A e A is a

function of the prolate spheroidal coordinates 9,O[i.e., = A. (rl,0)]. The con-

stant current densities, which lie on the boundaries between regions I and II and

between regions IV and V, can be expressed by the functions
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BAND

01 j1 o) -CURRENT

V IV 1111 BAND

1?171 102 0i Note

=71 I=cosh 1

?~~P \, Cos 0

Page 99 -Figure 13 -Ferromagnetic Spheroidal Shell Surrounding and

Surrounded by Infinitesimally Thin Current Bands
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0, if @ < 6 1 or 8 > 6 2

I ' f <6 (155)

Ji l(e) % if e I  <_ a <_ a2

where J () is equal to a constant J1 along 1 =TI for 61 < 6 < e2 and

0, if 6 < e/ or 6 > 6
1 2

2 =(156)

J (6) if l < e < 62

where J 2(0) is equal to a constant J2 along r = for < 6 < e' Therefore,

Equation (17) has only an azimuthal or psi component and can be expressed as

SA = A A (q,6) 0 in regions I through V (157)

When the vector Laplacian A-, is expanded in prolate spheroidal coordinates,

Equation (157) can be expressed (see Appendix A, Reference 8)

sinh (s1 n +A [iSiA 9 (1

Adopting the following notation

= cosh q, V = cos 6

and following the logic presented earlier, the solutions for A in regions I

through IV have the general form
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A, K [P (C) + K Q (E) J 1 P(V) (159)
p=l 

p

The form of the component of the vector potential A p in regions I through V

is determined from Equation (159). These magnetostatic vector potentials in

regions I through V are

+ [A' P11(v)

pl

ApI CO~ p\~ B, P(E 1jC PlVJ (160b)
p=l

A V [~FpPlC) + GplE 1 1160d)

p1V H -( P

Because the potential must be finite in each of regions I through IV, and approach

zero as - - in region V, the following constants were set equal to zero:

1. For A , the constant associated with Q 1( ) P ICv) was set equal to zero

because P

Q I~-~c at =1 (z axis between +a)
p
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/
2. For AV the constant associated with P () P p(v) was set equal to zero

because

P I M cas 0
p

(we note Q( ) + 0 as ).
p

Constants A , B C, D Ep, F G, and H are to be determined from the! pp' p

boundary conditions. At each interface, the basic laws of magnetostatics (Equa-

tions (3a)) reduce to boundary conditions on B and H that can be used to evaluate

these eight constants. The normal component of B across each boundary must be

continuous, i.e., (B2 -B1) n 12 = 0 where the quantity n12 is the unit outward nor-

mal to the surface. This provides the following boundary conditions which must be

satisfied by the solutions given in Equation (160) for each region

B i = B i I at TI= 9 I  (161a)

B4lI = B at = (161b)

B lll = B lV  at Ti = T 3  (161c)

B lv  = B V at ) = 4 (161d)

However, because the vector potentials in each region are functions of

P (v), we can simplify Equation (161) to constraints on A at the interfaces
p

A I = A I at n = T 1  (162a)

A = A Ii at n = n2  (162b)

A III = A Iv  at ni = 3  (162c)

A IV = A V at n = n4 (162d)
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The second set of boundary conditions states that the theta (6) or tangential,

component of H across each boundary must satisfy the relationship

n12 x (H2 -HI) = s (163)

where Js (which equals J (0)) is the real surface current density in the limit of

vanishing width between the two regions. Using the relationship B = H, Equation

(163) can be expressed as

B B02 61
1 - JP(O) 

(164)

The current must be expanded in a series of associated Legendre functions

PlCv) as in Reference 9. The form of the current is
p

v p1 (cos 6)
p P p  

(165)
J (0) a(sinh2 T + sin 2 

0)

where, using C = cosh n and v = cos 6, V can be shown to be
P

V2

V = ( 2-2) P Ip(V)dv
p 2p(p+l) f p (166)

For the two current bands of interest, we have

00

J (0) = p

a( 2) 2 (167a)
a(

103

.- •-.---- II



P2

V"1

and J 2 (a)= (168a)
p2a(E2v 2)

V2•-(2p+l) a ( 1' i
where U ... 2ppl V2 P (v) dv (168b)

and v i = cos e and v = cos 0'
11 2 2

Referring to the curl in Equation (120), we car, write B in the form

B (VxA) = 1 (e 3 A.) 1 [(e-1) A ] (169)
0 e e 1 e 3  3 n a 1( 2 2)

From Equations (164) and (1.69), the tangential components of B in regions I through

V must satisfy the relationship
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I

t. - a( 2_v 2) ~ i A ~ 1

[1

)( ) Ap1 2 2 (17 CjII

~l p-1 Vp()

=/ J)l(O) = 21_ 2 A 1 1

pa( (170a)

2=

= I U.2 2 A ( -) AIII

2=a ( 17_v

(4) 7.i Li" [(g12-1)! A1 IV]

105 (170c)
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4=

a( 2 2 I _1)1 ApiV]

4=_1

p p(v

SJ2 ( ) 2(17 Od)p2 2_ 2
i a ( 4 -v )

The general expressions for the potentials in each region (Equation (160)) are

then substituted into the boundary cond4.tions (Equations (162) and (170)) and

solved for the eight constants (AP, Bp, Cp, D Ep, Fp, %. and H ). Because there

are eight equations with eight unknowns, the potential in each region can be deter-

mined. The eight boundary value equations are presented below. The index, p, in

the summation sign has both even and odd values. The eight expressions for the

boundary conditions are:

A P 1 ( )P 1 N) [B PI + C Q'( 1 ) P(16) (171a)
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- (t) (~~2) [~2~ (BPP'( ) +CPQ'(D)P'(v)]

PIa. _v__ 2 A p P1(P vl

1 (171b)

710

IdBP +CQ( '()DA Y E~ C) lN)(7c



(ut) a((.v2 ) E + GPQ1( ) P1(v)]

p ~ [2 112(Dpil(C) + EPQi(C))Pi~~ 1 _ M1

FFP I~ + CGQ1() I -1 V E) 1 (V)

pp ,V - _) HQ(C )(i

( 4-

4(1 4 (171h)

By making the following substitutions

p(C) (E 2_j1 )!, p 1 (0
p p (17 2a)

Q A (0 2_ a[ 1) , Q~) (17 b)
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ad performing algebraic manipulation, the eight boundary conditions can be simpli-

led to

ApP1 ( I) = Bpplp( l + CpQ'( 1 ) (173a)

I1
.A Pi BPPP +  C Q

J() a(2 2)
a(f 1 _v )

1l() (173b)
P (vM

B PP(2) + CpQ (2) D PI( 2 + EpQ (' (173c)
P p p 2

+ I I.
pP (P ) = Hp+,QF P (F C k 1.73)P 1) '3 p p '3) P '1

(~-) [~P'E~3 + pp~t)1) [F~pp' -3) + C~~3 1 (173f)

FP + Q F 1(r' (173 )
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(-~ )(HpQ"E 4) + (Ti) (FpPA(E 4 )+

),(e) a( 2_ 2

p

The solution of these eight simultaneous equations to obtain the constants gives:

1

A =B + C (174a)

p p p

1A

1 P (V) p L____ = (174b)
p 1 A pl

I p

F p Ep (E~ G3 p 1 + D p(174c)

p 3 p 3

E p= D p[Q] - G [R] (174d)
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[~~~] '23___

2) tj]

'I= + D [S] - c [7 (174c)
I~ p1 p

where

Ji1 P I -1

p p



i2
iS] = + [Q]

: p P ( 2)

[z] ( = R]

D jI+ [U] G (174f)
p p1 p

J"il l Q" (E2) + 1 p" (

i " where pl = Q( 2  (±~ ( 2

Pi p pP 1 P

wher P1S] + ( pi ~A( + (-!1) [QJ QA(y)

Is

(-i P~ [] p'C ) +(i ) [R]Q 2

[i S) + (11 p P(C 2  + p Q] Qp (E2j)

H = G + Jl (174g)

p p p
2
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2

wher e p2

~P (%4)[ A p

ip

[c]= (
p p "4)

_ p [Q [H] - J +_ ) [A]- P [H] -741 + [U
p [U] [Q, [H] - [R] [HI - [H] + [t'4

[/ ), (y +)
IIIp p '2 ±)'

P - - )[(s] 1" + ( . . -) 1",-

p C , 2 2
j[ Jl Jp2.(0) 'a ,-v )

p 4 p

p( 3)
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Because the eight coefficients can be determined for a specified problem from

Equation (174), the potentials AI  AlI , AIII, AIV , and AV in regions I through V

can be completely determined. The normal (B ) and tangential (Be) components of

the magnetic induction in each region, I through V, can be determined by using

Equations (120) and (124) to be:

1.00 
1

e, E 2 1'2 IA? t (v~j (175a)

P= a( 2v 2)P PP

11 ( v (175b)
pl a( 2_v2)

pB 1 ) [(I2_12) (BpP 1 )+ CpQ 1() plp() (175c)

p=l a(E 2_1v2) 8 21(1t7e

p=1 a(2_,2 p P P P

.0114

B 00 2 - C Q'())(

-PO -1;2 1Q + EQ ) 1(v(1 7 5f)

p'l a(f 2_V2)1- 2

-11



B -E(\(FP Q + GQ1 Q) PI (V)i (175g)
Berv p p )\P

B~i F 1 a_ [rA-2) +F~ GO1(& P1.MI (175h)

00- 1 H 11 ( )P' 1 (175i)
B1 2~ Fk,' p (v

B 1: .1 ~ HP( )Pl(vl (175j)
A~ pV =1 a (C2_,2)1'~ p P p
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APPENDIX A

FERROMAGNETIC SPHERICAL BODIES IN A CONSTANT
EXTERNAL INDUCING FIELD

INTRODUCTION

In previous work Brown and Baker derived the closed form mathematical expres-

sions for the magnetic flux density for two configurations of a magnetic spherical

body surrcunded by a stationary current band of azimuthal spherical symmetry. The

first case treated was for an infinitesimally thin stationary current band surround-

ing a spherical magnetic shell. The second case is for a stationary current band of

' finite width surrounding a solid magnetic sphere. The magnetic bodies were assumed

to be linear and homogeneous.

" I'he problel of the magnetic induction for an infinitesimally thin current band

surrounding a sphciical shell can be generalized to include an external magnetic

field. The superposition principle discussed in the text of this report can be

used in these two cases to include a constant external magnetic field. The iagnt ic

induction in each region for a three-dimensional magnetic spherical shell in an

arhitrary extk-rnal magnetic field H is added to the magnetic induction for the
0

corrt. po, di ug rug ion for the spherical shell surrounded by and/or surrounding a

Stationary current band. The problem of deriving the magnetic induction for a cur-

rent band of finite width surrounding a solid ferromagnetic sphere can also be

gtiteral izod to include an external magnetic field H in a similar manner. Thus, the
0

,I',ncti Pindict ion for a ferromagnetic spherical body in an external magnetic ficd

.,It oI. d.t Urm i ed.

slt h iutasnviit. external field problems were solved by Nixon of the Centsr.

Sclo ced form nathematical solutions for the magnetic induction for both constant

v<tcrnal field problems were presented in Reference 6 in Cartesian coordinates. V

w,is neces,,rv to convert these mathematical expressions to spherical coordinates t,

h i coipAtible with this work.

S ~0.lI t. liItOMACNETI SPIIERE IN AN EXTERNAL INDUCING FIELD

[i c' i, ijl fe.rromagnetic sphere in a constant external inducing field is shown

II ij ,.1r-u A.I . ThL permeability of the solid sphere is ji 2 and the radius of the

lt,., i: 1-,' 1* 'lht, permeability i of vacuum that is external to the sphere is

dctHtl o I< ,nstant arbitrary magnetic field is designated as It
0.
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ARBITRARY CONSTANT
MAGNETIC FIELD
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r

Figure A. - Ferromagnetic Spherical Solid in a Constant
External Magnetic Field
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It is assumed that tj2 in the sphere is constant, and that p is constant in the

region external to the sphere. Because there are no currents in any region in the

problem, the magnetic field H can be expressed as the negative of the gradient of a

magnetic scalar potential $m in regions I and II, respectively.

HI - Im for 0 < r < R (A.la)

-V for R < r < o (A.ib)

where

B ='2H (A. ic)

BI I(A.id)

The major step toward solving this problem is to determine the solutions of the

scalar Laplace's equation in regions I and II which satisfy the boundary conditions

at r = R In terms of B and H the magnetostatic boundary conditions are

(BII-BI) n12 - 0 at r = R1  (A.2a)

n x II-H)= 0 at r = R (A.Zb)
12 ITI I

where n1 2 is the unit vector normal to the surface of the sphere from region I to
II.

The general expression of, im and 1Im which satisfy Laplace's equation in

regions [ and IT are:

Ar sin I cos iP + Br sin 0 sin i + Cr cos 0 for 0 < r < R

119 
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(PI Dr- sinG cosp+ Er2 sinG0 sin + Fr2 Cos 0

-H oxr sin Ocos H - H r sin 0 sin Hp -H r cos 0

for R 1<r < o(A.3b)

The coefficients are determined by the magnetostatic boundary conditions (see

K Equations (A.2a) and (A.2b) and are:

3p_1_H__ (A.4a)

P'2 +2i1

B= 3pjHoy (A.4b)
P12+211

C= 3 11H10z (A.4c)
P2 2+211

D= ~1 2+21 1 (A.4d)

E 12 1 ) (A.4e)
(2 +2i1
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106

F 1 2(A.4f)P2+ 2 p 1

For details of this derivation, the reader should consult the work of Nixon.6

The authors have transformed his mathematical expressions for the magnetic induc-

tion in regions I and II from Cartesian to spherical coordinates. This makes the

expressions for the magnetic induction compatible with the present work of this

report. These mathematical expressions are in regions I and II:

B1 (rO,,) = - \,'2 _(A sin 0 cos - B sin 6 sin q).+ C cos 6)

- 2ei a(A cos 6 cos i + B cos e sin i - C sin e)

- 2 e (-A sin P + B cos i) for 0 < r < (A.5a)

-3 -3 -3

B(r,' ) = + lei r (2Dr sin e cos ' + 2 Er sin e sin P + 2 Fr - cos 6

+ H sin o cos + H sin 6 sin 4p + H cos 0)ox oy oz

-3 -3 -3

p (Dr- cos 6 cos + Er- cos 6 sin P - Fr - sin 6

Note: Above equation continued on next page.
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- H cos 0 cos - H cos 0 sin + H sin 6)ox oy oz

- le(-Dr 3sin + Er cosP + Hox sin -Hoy cosiP) (A.5b)

where = - (A.Sc)

/1\ m e4 m
V H e + m + . (A.Sd)

and r r r rsin03

FERROMAGNETIC SPHERICAL SHELL IN AN EXTERNAL INDUCING FIELD

The problem of the spherical shell is similar to the problem of the solid

sphere. The inner radius of the spherical shell is R1 and the outer radius is R2

(see Figure A.2). The permeability of the magnetic material in the shell is p

and the permeability P 0 of vacuum that is internal and external to the shell is

denoted by p" The constant external magnetic field is designated by H0 0I
The problem of deriving the closed form mathematical expressions for the

magnetic flux density in each of the t'iree regions (I through III) was worked out

in detail by Nixon. The problem was solved in a method exactly analogous to the

problem of a solid sphere in a constant external magnetic field. For details of

the derivation consult Reference 6.

The general expressions for the magnetic scalar potential cm in regions

I through III are:

= Ar sin 6 cos P + Br sin 6 sin + Cr cos 6 for 0 < r < R (A.6a)

Im = (Gr+Hr-2 ) sin 0 cos i + (Ir+Jr - 2 ) sin 6 sin

+ (Kr+Lr)-2 cos 0 for R < r < R (A.6b)
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=IIM Dr2 sin 0 cos + Er2 sin 0 sin + Fr2 Cos e

-H r sinG0 cost-H r sin 8 sini
ox oy

-H r cos 6 for R < r < (A.6c)
oz 2

The coefficients are determined by the usual magnetostatic boundary conditions

on the spherical surfaces at r = R 1and r = R 2 * The coefficients determined by

this method are:

H - 1 [(2p 1+12)(2j 2 +P 1) + 2(pl-p 2 ) ]H (A.7a)

G 2 11 I 1H

(A.7b)
3

D CR 3+ H +H R3(A.7c)2 ox 2

A G+HR1  (A.7d)

[ (2p.i1 +P 2 ) (211 2-IP 1 ) + 2(p 1 -p 2 ) H (A.7e)

LP )~2 iR~ + R~ 3 I
124



(21 2-1P 1 )

E IR ++1 R (A.7g)
2 oy 2

3B = I + JR 3  (A. 7 h)

1 (21j+1 9 ) (2i 2 +,ii) I_(2 _ 02)-
-3 R3 oz

1 o (A.7 i)

K 2 1 L (A.7j)il(,P2-Pl) R

3

" = KK + L±+Ht R (A. 7k)

C K + LR 3  (A.7,
I

The auth ,rs have transformed Nixon's 6 mathematical expressions for the magnetic

indijt ion in rcgions I through 11 from Cartesian to spherical coordinates. i is

t71:1,.; 1h express ions for the magnetic induction compat ible with the present work of

til; report. These mathematical expressions in regions I through 111 are:
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!1i(r,e,P) -- -. (A sin cos + B sin 0 cos i + C cos 0)

S^e- ~(A cos 6 cos + B cos 0 cos ip - C sin 0)

- le (-A sin + B cos*) for 0 < r < R (A.8a)

-- l(r', = - 2er [(G-2r-3H) sin 0 cos

+ (I-2r 3J) sin 0 sin 4 + (K-2r L) cos O]

P ~e[G+Hr 3 ) cos 0 cos i + (I+Jr- )

(cos 0 sin 4) - (K+Lr 3) sin 0]

- 2e [-(G+Hr- 3) sin iP + (I+Jr -3 ) cos

for R < r < R2  (A.8b)
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Bl(ro'P) = + [1A [2Dr -3 sin 8 cos + 2Er 3 sin

+ 2Fr -3 cos e + Hox sin 0 cos ' + Hoy sin 6 sin ' + Hoz cos 8l

Il le e r -  cos 6 cos ' + Er-3 cos 6 sin -Fr- sin e

-Hox cos 8 cos - Hoy cos 6 sinP + Hoz sin ]

. 'e,. Dr - 3 sin + Er-3 cos + H sin Hoy Cos (A.8c)

where B=- V (A.8d)m

and v - + + (A.8e)
r r r 6 r sin e ( e
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APPENDIX B

DERIVATION OF THE COEFFICIENTS OF THE VECTOR POTENTIAL
FOR A SOLID SPHERE SURROUNDED BY AN INFINITESIMALLY
THIN SPHERICAL CURRENT BAND AND REDUCTION OF THE

MAGNETIC VECTOR POTENTIAL TO THAT OF A THIN
BAND IN VACUUM WHEN IN THE LIMIT p12 EQUALS p 1

DERIVATION OF THE COEFFICIENTS

In this appendix the coefficients are derived for the vector potential in

regions I through III for a ferromagnetic sphere surrounded by an infinitely thin

current Land. For a detailed discussion of this ferromagnetic problem, see the

section in the text of the report entitled "Solid Sphere Surrounded by an

Infinitesimally Thin Spherical Current Band". The magnetic vector potential in

each region is given by:

AI  = All) = (AplrP)P (cos 0) (B.la)

p=l

SBp2 1
A = A A p2r + (P+l) P ) (.b)

p=lr

A A i 0 = I (Cos 0) (B.ic)

p=l

l1: coc fficiIlts (A pi) and (B pi) in Equations (B.la) through (B.lc) are obtained by

*klltitut~iL t the,. i-quations into the boundary conditions (Equations (B.2a) through

A, =1 A at r = R1 (B.2a)

A =AII at r = R2 (B.2b)

L29
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11l

-K (rA I) + K rA J J(e) at r R (B. 2d)
r ~r Pl r ~r 1,I

After appropriate substitutions of Equations (B.la) through (B.lc) into Equa-

tions (B..2a) through (B.2d), the following boundary value , quations are obtained.

A Rl R 1 p A p2RP+B p2R -(p+l)] (B.3a)

F A ~+ (p+l)]- (p+l)
A p2 R2 p2 2 R 3  (B.3b)

[A~2(Pl)(p+2 I B - [A(+l)R{P) 0 (B.3c)

* ~ ~ [-BpR 2 ( ++ ~[A2 (p+l)R 2 P pB Rj(P2J (B.3d)
Pi p3 2P (Cos 0)

These algebraic equations provide four simultaneous equations, with four

*unknowns, which can be solved for the coefficients A piand B piby algebraic mani-

pulat ion.

Solving Equation (B.3a) for A Piand Equation (B.3b) for B p3we have
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A A + B R-(2p+l) (B.4)
p I p2  p 2 R1

A2RP + B R2(p+)
p p (B.5)

p3  - (p+l)R
2

2,,

Solving Equation (B.3c) for A gives

B~1 - (pl
A, =[ 2]A p2 Bp 2PR 1  (B.6)

l(p+l)

which, when substituted into Equation (B.3a) and solved for A yields

A B [R(2p+1) (P) (PR I (2p+l))]( 7

p2  p2

Substituting Equations (B.5) and (B.7) into EquaL ua (B.3d) gives the expression

for B p2

P (B.8)

(2p+I)RP 
(p+l)
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Simplifying Equation (B.7) by using Equation (B.8) yields

A = 1 (B.9)
p2 (2p+l) ReP-1)p1(Cos 6)

2 p

The following expression is obtained for Apl from Equation (B.4) after substituting

Equations (B.8) and (B.9) for Bp2 and Ap2. respectively, as

[(l- 2 ) 11  Ie

A(1-O))/ )co (B .10)

IJ1 (P-) 1 (B.1O)

(2p+I)R2P p (Cos ) (2p+)R 2  1 +  (p+l)

The mathematical solution for Bp3 in terms of knuwn quantities is obtained from

Equation (B.5) by substituting the previously obtained expressions for Ap2 (Equa-

tion (B.9)) and for Bp2 (Equation (B.8)).

JP(e)R(2p+I) (J-

P'(cos 8) il P (cos 6)

p3 R 2 ~) )(2)R)(P 1  (11i
(l)

#3 i 2p)RP) (RI(2p+I)) (2p+l)R( p - I )  i+ L2 (pl

(B.11)
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After the numerical value for B p3is calculated on the computer for a specific

problem, the numerical values for the other coefficients can be obtained from the

following equations:

(B-Pl) 12~) P(Co e)) (B.12a)

p 22

R- (p+1(2pl (P1) 1 ) Vi()p
( ) P1(cos 0

p 1  (P1 0) if /'.2
2 p2 (2+1RWgll B.2c2 0/Pl

REDUCTION~~~~ 2) TH PTNTAS HN 1 EULS0

in ~ (p+) th lii as k seFiueBlIohs (2)limit thej co*ffirietsshul

2 1
assume the following form
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A =l A p2;B p2 0; B p3 0 (B.13)

where A 1P and Bp3 should reduce to the coefficients for the potentials in the two

regions for the spherical band problem of Appendix B in Reference 7. One

immediately observes, from Equation (B.12a) that B =0 whe j Fo qa
p2  hn12 l'1. rm qa

tions (B.12b) and (B.12c) we see that

P Co 6)]

A = LPco (B.14a)

p 2 2

Apl Ap2  (B.14b)

From Equation (B.11), in the limit of p12 P l. we have

IP

B p3 (B.15)

R(P 2)2p+l)P (Cos 6)
2 p

Rewriting A 1P we have

A1  p 3 R2(pl (B.16)
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This means that in the three regions the components of the vector potentials

used in Equations (B.1):

= \ (A pl rP)Pl(cos 6) (B.17a)

p=l

00 p B 2  1
A A l r + jP (Cos 6) (B.17b)

ipII p2 r (P+l) p

A B p 3  P1 (cos 6) (B.17c)Eil = r(P+l) P

p=l r

reduce, when 12 = hI' to the form

ApI =A I  A )rj (B.18a)
p=l pl Pl(cos 8)

/ rP(p+l 6)

The mathematical expressions for A 1 and B 3 (see Equations (B.16) and B.15),

respectively), for the ferromagnetic sphere surrounded by a thin current band in

the limit as P2 = I' are the same as for the coefficients Apl and Bp2 (see Refer-

ence 7, Appendix B), respectively, for the components of the vector potentials in

the regions of the current band in vacuum. For comparison, the coefficients for

the current band problem are:
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B ip (B. 19b)
p2 P.I(cos R- +2(pl

p 2

anth makfi ingfo the feoma gnet musc spe et bequa wto Pr
2 P
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APPENDIX C

DERIVATION OF THE COEFFICIENTS OF THE VECTOR POTENTIAL

FOR AN INFINITESIMALLY THIN CURRENT BAND SURROUNDED

BY A FERROMAGNETIC SPHERICAL SHELL AND THE REDUCTION

OF THE MAGNETIC VECTOR POTENTIAL TO THAT OF A THIN

BAND IN VACUUM WHEN IN THE LIMIT 12 EQUALS P

DERIVATION OF THE COEFFICIENTS

In this appendix the coefficients are derived for the vector potLntial in

regions I through IV for a ferromagnetic sph2re surrounding an infinitely thin cur-

rent band. For a detailed discussion of this ferromagnetic problem, see the sec-

tion in the text of the report entitled, "Hollow Sphere Surrounding an Infinitesi-

mally Thin Spherical Current Band". The magnetic vector potential in each region

is given by:

A =A A I r'p( Cos e) (C.la)
p=l Li

A =A = pLrP+

A =A = F r + B p1(cos )(C.b)

p=l r(P+I) P

AIV -AIV = A H rP + r(p el(c°S )  (C.ld)

ihe co(efficients (A and B in Equations (C.la through C.ld) are obtained by

substituting these equations into the boundary conditions (Equations (C.2a)

through (C.2))
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A =A r= R (C.2a)

A =A I  r =R 2  (C.2b)

AIII=AIV r =R 3  (C.2c)

(rAl + (rA = J(6) r =R (C.2d)

r IirP r 3rA 1 I

1 19 1 1i

2 r r rAII)+ i P rrAII) = 0 r= R 2  (C.2e)

i r 9r IV+ -r (rA1v))
+ = 0 r = 3  (C.2f)

After appropriate substitutions of Equations (C.la) through (C.id) into Equa-

tions (C.2a) through (C.2f), the following boundary value equations are obtained.

ApRP = A + B R_(p+l) (C.3a)p1 1 p2 1 p2 1

A R p2R2 (p+ I ) = A + BpR2(P+I) (C.3b)
p22 p 22p 3 2 p3 2

A p + B R_(p+ I ) = B R -(p+I) (C.3c)
p3 3  p3 3  p4 3
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- -r,(p+l)R(Pl1) -pB R-(p+2)l + L- [A (p+l)R (P-1l. (C.3d)
A 2p2 1  P ILP 1  J ( Cos

(pA(plR+l2O~~c~ + -[A (p+l)R(P-) -~p RER(p+2]

p 3 I ( C .3 e )

Py [pB 4 R3 ' J + p3 (p+l)R( - pB 3R- 0 (.f

The algebraic equations provide six simultaneous equations with six unknowns to

which can be solved for the coefficients A and B* by algebraic manipulation.

Solving Equation (C.3a) and Equation (C.3d) for A prespectively, we have

A =A + B R ( 2 p+l) (C.4a)
pl. p2  p 2 l1

__________ -(p-I) B p0 2 pR I(p1

A 1P R 1 + A p2(C.4b)
P (Cos 0)(p4-l) 1p(p+l)

EquaLing (C. 4 a) and (C.4b) and solving for Bp2 yields

B p2 ________ - p (C .5)
(2p+l)P (Cos 03) p
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Using Equation (C.3c) to solve for B p4we have

B3 =A R 2~)+B(C. 6)p4  p3 3 +p 3

and similarly, using Equation (C.3f) to solve for B 4, we have

r 14
- I (2n+lD(C7B - A -Pl RC.B

3 PI

Now, upon equating Equations (C.6) and (C.7) and solving for B pwe obtain

B p3 A 3 [X (C.8)

where [xJ= 2Rpl {l> Pl)

Solving Equation (C.3b) for A p2 and substituting Equation (C.5) for Bp2 yields

A J / J (O)R- 2 p~l) + A + B R -(2p+l) (C.9)p2 p 2 p3  p3 2

Using Equations (C.5), (C.8), and (C.9) in Equation (C.3e) yields the following

expression for Ap3
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A *~[ J(O)(2p )Rj p+21

1P1 P2 (p-i) 1 X (pi-2P3 [TI1-- (P+l) R 2' + Pi [xJ(P+) R 2 ) - 2 (p+l) R2  P[ J2

-R- (2p+1) I + I/n+1\I

where [X]= 2

* (2p+l)P (Cos 0)
N. p

The constants have now been found. After the numerical value of A p3is calculated

for a specific problem, the numerical values for the other coefficients can be

obtained from the following equations:

B j (20)i (C.lla)

B p3=A p[Xl (C.llb)

p3p p3 p3

' -(2pRl) p p

A 1  = A p2 + B p2 R21 (C.lld)
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B 4 = R(2p+l) + Bp3  (C.lle)

REDUCTION OF THE POTENTIAL WHEN w12 EQUALS 1i1

When p is set equal to p2 the above ferromagnetic problem reduces to that of

V finding the potentials in the two regions of a simple current band (see Figure

(B.1), because the ferromagnetic shell will now have a permeability Pi equal to that

of the homogeneous medium with a permeability p I In this limit the coefficients

sh)uld assume the following form:

Apl P 0 Bp2  B p4

Ap2  
0 Bp3  B p4

Ap3 =0 Bp4 0 (C.12)

where Apl and Bp4 should reduce to the coefficients for the potentials in the two

regions for the spherical band problem (see Reference 7, Appendix B). If the

coefficients assume this mathematical form it will prove that the mathematical

forms of the coefficients for the spherical shell surrounding a thin current band

are mathematically correct.

The coefficient Ap3 will now be evaluated when the limit is taken with 112 = Pi

which causes [X] to approach infinity (see Equations (C.1O)).

SJI (mp+I)R2 (p+2)

A p3 Zimit 1 Il) l -p+ I(1)12
r(p+l)R + 1X r1(p+2 - l(p l) 1 2 XRl-(p+2-- 1pXl)R2 + Pi 2(p+I)R2 (p+2X

(C.13)
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Ap3  0

, 2=PI

where P

4. P (2p+l) R P+2 )p (cos )

The expression for Bp2 (see Equation (C.lla)) is

Bp2 J (C.14)

Theexpesson or p2whn j 2 i i stll psince J pis not a function of

I

B =j (C.15)

p2  p

P2=Pi

The expression for B p3 (see Equation (C.llb)) is

Bp3 A p3[X]  (C.16)

p3

B 3 X](.6



where p2 =i Bp3 can be written as

B 3

p3 __, I] - yI(p+l)R 2 P + - Li (P+1)R-(p+2 (p+.)R"-)+ p[x]R- (p 2)
12 1 1 P' 2

= ~ [] 9APiit L~ (2p+)R p2 )

B p3l "Jp

P2=P i

The expression for Ap2 (see Equation (C.llc) is

A R (2p+l) + A + B R( 2p+l) (C.18)Ap2 p R2  Ap3 p3 2

when p= 2 l'Ap2 can be written as

A J- (p + A, + B R2 (
2 pl)

p2 p p3,

2 12=Pl 22=Pi ( C.19)
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Ap2  Ap3  0

The expression for Bp4 (see Equation (C.lle)) is

B =A R (2p+l) + Bp4  p3 3  p3

when p= 1 B p4can be written as

p4 p 3p

02P 1=P 2=111 (C.22)

B p4 B =lJ/ (C,.23)
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Fp r--

The expression for A 1P (see Equation (C.lld)) is

pl p2  p2 1 (2p+l)

A A +(~2 )Bi2R

A 1  =(ABP21 +2R1(pl

IP

P = (B 2p )R2=+1)

= R- (1
2 p~l)

P2111 (C .24)

A R- (2148



This means that in the four regions, the components of the vector potentials

used in Equation (C.1)

SjA~ A [Arf P (Cos (3) (C.25a)

i Ap r + (P+1)JP p (o C2b

FB p3 1
A =I 3 PrP + ( P ' P(Cos 0) (G.25c)

rp

A Y= 1 0)Co (C .2 6d)

reduce, w~hen i tothe [formP(cs0)(.2b

P2=Pl(C .26a)

A~~rL jT i
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The mathematical expressions for Apl and Bp4 (see Equations (C.24) and (C.23),

respectively) for the ferromagnetic spherical shell surrounding a thin current band,

in the limit as p12 are the same as the coefficients A and B 2 (see Reference

7, Appendix B), respectively, for the components of the vector potentials in the

regions of the current band in vacuum. For comparison, the coefficients for the

current band problem are

A B R (2p+l)
1, p2 R (C.27a)

B P 1Jp(6) (C.27b)
p2 Pl (cos e)R(P+2 ) (2p+l)

p 1

and the coefficients for the ferromagnetic shell problem with P= 2 1i are

A B p (C .28a)
p1  p4 1

B lJp (C.28b)
p4 p (cos e)RI (p+2)(2p+l)

p
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APPENDIX D

SPHERICAL SHELL WITH INTERNAL AND EXTERNAL INFINITESIMALLY

THIN SPHERICAL CURRENT BANDS AND THE REDUCTION OF THE
MAGNETIC VECTOR POTENTIAL TO THAT OF A THIN BAND)

IN VACUUM WHEN IN THE LIMIT 2 EQUALS W,

REDUCTION OF THE COEFFICIENTS

In this appendix, the coefficients are derived for the vector potential in

regions I through V for a ferromagnetic spherical shell with internal and external,
* infinitely thin, spherical current bands. For a detailed discussion of the ferro-

magnetic problem, see the body of this report. The components of the magnetic vec-

tor potential in each region are given by

A, A = A rPPl(cos 0) (D.la)
p=l

p + B 12A 11 AI = Ap2r + _ ] P (cos 0) (D.Ib)

p=l

A A r Bp r pl(cos 0) (D.lc)Al I AIII 1 P=i p3 r r(P+1)

AIV = Ap4 = r + - l(cos 0) (D.id)IV p=i r(P+l) P

AV = A p=5 4 5rp (cos 0) (D.le)
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The coefficients in Equations (D.la) through (D.le) are obtained by substituting

these equations into boundary condition (Equations (D.2a) through (D.2h).

A, A at r=R (D.2a)

A ~A at r=R(D2

III IV 3

AIV A at r R4  (D.2d)

(rA )+ (rA) = 0O r =R (D.2e)
1r 3r III + - r -r I1 12

1 1 1 1

112 r ~1rA 1 1  j -P2 r r (rA11 ) 3 =R (D.2f)

1 1 (rAiV) + r a (rA 1 ) J20 r =R 4 (D.2g)
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After the appropriate substitutions are made, the following equations are obtained:

IApl [pR = [ A pP + Bp2R (D.3a)

PA R(P+) p + B R (p+l)] (D.3b)

R-B + (p+-lD

if Ip3R 3 Bp 3 3  J [Ap4R 3 B ]p4R3 (

A RP +B (p+l) [B R 4p5(+l (D.3d)

Ap2(P+RP-1) - (p+2)1 ( p-) -2
LApI pBR1 - P+I)A pRP (D.3e)

I - 2A'( +I j( _ (P ) 4 j) p i R P l - PBp2R2(p+2) ]  0

(D.3f)

A (p)') (p-p)1- pB R_( 2)+p )3 p2] 1 0
p4 + P 2 3 3

(D.3g)

j (u)

1)4 4P1
ii [PR4(P+2 )B 5 ]+ ijA A(P+)R~ ~ PlRos)1)
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These algebraic equations provide eight SiMUILaneous equations with eight unknowns,

wihcan be solved for the coefficients A andB b algebraic manipulation.

p4  (p4 1 p [4

Solving Equations (D.3 ) and (D.3 ) for B and equating the results to solve
p4

for2 A yields

(AP~) 1 +(P2.)B (D.4)

p4 (P1)J P Xl

Solving Equations (D.3) and (D.3) for A P and equating the results to solve for

ABp2 l yields

= (2p+l))P 2~p'(cs) (D6

A ~ B[ ] [js z (D.)
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[w ~2 []= (2pil) D8

p [x] A 4 (D.8)

Now, using Equation (D.3b) and the results of Equations (D.4) through (D.9) to

solve for B~3 yields

B 3 R'[Xl [S] - RP [XJ[S] [T] - [Y] [A] Rp - [Y]R2P'

R [W][T] R - R P [w] (.O

where [x] 1p1 2G) (D.11)
(2pIl) (R 4 l)) P(Cos CI)

[Y] p 1 p P1())-(D .12)

[T] = (p+) R 2'~' __ (D.13)

± 1 ( -(2+ )) ) R 2 p + 1
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[A]= (D.14)

R2Ip+l)i + Iil ((-R o
3 P2 \PI

Now B 4, Bp5 , and A 1 can be found from

B A A3 (2p+l) + B A AR(2p+l) (D.16)p4 p3 3  Bp3 p4 3(.6

Bp5 = - Ap4 (P+) 2 p+ l) + B 4 + pli p (D.17)

P 4 p4 P 1 (Cos O)pR4 p2

A A + B RI( 2p+l) (D.18)
p p2 p2 1

The constants have now been found. After the numerical values of Bp39 Ap4 , and Bp2

are calculated for a specific problem, the numerical values for the other coeffi-

cients can be obtained from the following equations
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A p3 =Bp3 [W] + [X][s] [zJ (D.19a)

B A R (2 p+l) + B - A R(2 p+l) (D.19b)
p4 p33p3 p4 3

* / ( \(2p+l)
B =-A 4  ('r' )R ~ +B,;.. p5 = p4 p t4+ Bp4

+ '1 p2 (0) (D.19c)
P + (cos 0)pR

Ap2 = [T] Ap3 + [A] Bp2  (D.19d)

1 + B R( 2p+l)

Ap 2  B21 (D.19e)

REDUCTION OF THE MAGNETIC POTENTIAL WHEN p2 EQUALS p1 AND Jl(I) = 0

The coefficients Ap, Ap2, Ap3, Ap4 , Bp2) Bp3) Bp4 , and Bp5 for the potentials

are now evaluated for the system consisting of a ferromagnetic shell with

permeability p2 surrounded by an infinitesimally thin current band (J2) in a homo-

geneous medium with permeability p1 , in the limit as p 2 = W1 (J 1 ) = 0). The varia-

bles are defi'ed in Figure 9 located in the text. When U2 is set equal top 1 the
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problem reduces to that of finding the potentials in the two regions of a simple

current band (see Appendix B of Reference 7), because the ferromagnetic shell will

now have a permeability p equal to that of the homogeneous medium with permeability

In this limit the coefficients should assume the following form:

A pl =Ap2 = Ap3 = Ap4  (D.20a)

Bp2 B p3 = Bp4 = 0 (D.20b)

Ap1  Bp5 (RZ(p+) (D.20c)

and where Apl and Bp5 should reduce to coefficients for the potentials in the two

regions for the spherical band problem.7 If the coefficients assume this mathemati-

cal form it will prove that the mathematical form of the coefficients for the spheri-

cal shell surrounded by a thin current band are mathematically correct.

From Equation (D.10) Bp3 is

B s[X][S] - RP[X][S][T] - [Y][A] Rp Y]R (P+l)

Bp3 R~[][J-~ (p+l) - R [W] (.1

Now B XTiit B =
p3  p3  0 (D.22)

P12=l1
112=111
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I

because [Y]= 0 for Jp = 0

Zimit [T}= 1

P 2=PI

The expression for Bp2 is zero because Jpl = 0. The expression for A

(see Equation (D.5)) is

A = A [T] + B [A] (D.23)
p2  p3 [A]p

because [T] =I and Bp2 =0

P2=PI

Ap2 = Ap3 (D.24)

The expression for A (see Equation (D.18)) is

A A2 + B R(2p+l) (D.25)
PI P2 p21

and because B = 0p2

Apl = Ap2 (D.26)
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The expression for A p3 (see Equation (D.7)) is

A p3 B P,[]+ IX(D.27)

and because Bp3  =0

P2=p

A P3 [IEAp (D .28)

Now A =A =A =A PIp 2  (D.29)

P1 p2 p3  p4  2p PR~1 ~o 0)

The expression for Bp4  (see Equation (D.16)) is

B =A R (2p+l) +I B -A R (2p+l) (D.30)
p4  p3 3 p3  p4 3

Because in the limit p 12 A -A ,and because B 3  0 we have
2p 3  p4  p3 0

Bp4 = 0 (D.31)
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The expression for Bp5 (see Equation (D.17)) is

B =-A 4  (p+1)) R(2p+l) P B 4 + J 2 (6) (.2

p5 A p4 P R + B p4 pR4 (p+
2 )pl (Cos 6) (.2

p

In the limit

P (6)

Bimit B 1 R p2
P5 p5 R- (p"'(2p+l)P 1(Cos 6)

1 211 1(D.33)

This means that in the five regions, the potential used in Equations (D.1) reduce,

when p 2  '= and J = 0, to the form

A , A p, rp) P1(cos 6)(D4a
A = (A(.3a

11 2=P1

A = B P I(Cos 0)
WV p=1 r /P

11 2V1 1(D.34b)

because A A A A1_p D3a
pl p2  p3  p4  (pIR(p-i) 1 I((Cos )
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Bp2 =Bp3 =Bp4 0 (D.35b)

B Pip2 ( )
p5 R4(p+2) (2p+l)P1 (cos6) (D.35c)

For comparison, the coefficients in Reference 7 are (primes are used for distinc-

tion)

A = B1 R -2 p - I  (D.36a)
pl p2 1

B/= p (D.36b)
p2  R1 (P+2) (2p+l)P I(cos 6)

When making the comparison one lets R4 = RI.

REDUCTION OF THE MAGNETIC POTENTIAL WHEN p12 EQUALS pi AND J2(O) = 0

In a manner similar to that of the preceeding section, the coefficients are

evaluated for the system consisting of an infinitesimally thin current band[J1 (6)]

surrounded by a ferromagnetic shell with permeability i 2' in a homogeneous medium

with permeability "I, in the limit as 112 = PI .

In this limit the coefficients should assume the following form

Ap2 = Ap3 = Ap4 = 0 (D.37a)

A = B R-(2p+l) (D.37b)pl p2 1

Bp2 = Bp3 - Bp4 = Bp5 (D.37c)
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From Equation (D.5), A is
4. P2

A3 ((p+) 2 + ( ) B 2

9A (D.38)

p 2 + Pz. ((p+))] &~l

Ap2 1 Zli A p2  Ap3  (D.39)4 142211

The expression for B 2 (see Equation (D.6)) is

B () 1y (D.40)
2 (2p+1)R( P+2 p1 co

1 p

The expression for A 1/ (see Equation (D.4)) is

A 4  1 1 1 _p2 _O [XJ (D.41)
p4 (p~l)(P-jP I Cos0)

4 pI ~and b~ecause A1p

A =0 (D.42)ji p4

The' C'XJ ~i I b (,,c ' Ie Equatl ion (D. 10)) reduices when p2 01 to
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BI 3 (p+2) 1 (D.43)
(2p+l)R1  P p cse

because, when p112 and J =0
2 1 p2

LX] (D.44a)

[] (2p+1)R (p+2)pl (co s e) D4b

p

[T] =1(D.44c)

[A] = 0 (D.44d)

[W] = 0 (D.44e)

The expression for A3 (Equation (D.7)) is

A p3=B p3[]+ [IS](D.45)

and because [W] =X rx 0 when p2= Il.and J p2 0, we have

Ap3 = 0 (D.46)
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Similarly, for Ap2

A p2 A p3 [T] + Bp2 [A] (D.47)

and because A p3  0 and LA] =0 when P12 P l., we have

A p2 0 (D.48 )

The expression for A 1 (Equation (D.18)) is

A =A + B R 2l (D.49)
p1 p2  p2 1

Because A p2=0, Equation (D.49) yields

Apl p2 R1 (2~)(D.50)

For Bp4 , using Equations (D.16), (D.46), and (D.42) we have

Bp4 =Bp3  (D.51)

similarly, fc: B, using Equations (D.17) and (D.42), and the fact that J2 0,

we have
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B p5 B p4(D.52)

*Thus, we have shown that when p 2 l and i 2 (e) =0,

A p2= A p3= A p4 0 (D.53a)

A 1 = B p2R1-2~)(D.53b)j

p2  p3  B 4  B P 5 e D5c

=B p3 p4 p5 (2p+l)R (+ 2 )P 1 (Cos 0)(D5c

1p

Once again this means that, in the five regions, the potentials used in Equations

(D.1) reduce when pi= W2and J p2=0to the form

=~ L (A 1 )I rpPP (Cos e

P1j1 (D.54a)

A Ip11 1 1 1 V, V p B 2  P(Cos 6)(D.54b)
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For comparison, the coefficients in Reference 7 (primes are used for distinction)

are

B1  I R (-2p-1) (D.55a)
pI p2 1

B1  (D.55b)
12 (p+2) (2p+l1(Cos e

p
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APPENDIX E

FERROMAGNETIC PROLATE SPHEROIDAL BODIES IN A CONSTANT

EXTERNAL INDUCING FIELD

INTRODUCTION

In previous work Brown and Baker '
9 derived the closed form mathematical

expressions for the magnetic flux density for various configurations of a ferromag-

netic spheroidal body surrounding and/or surrounded by a stationary current band of

azimuthal symmetry. The problem of determining the magnetic induction for a prolate

spheroidal body surrounding and/or surrounded by an infinitesimally thin current

band can be generalized to include an external magnetic field. The superposition

principle discussed in the text of this report can be used in these cases to include

a constant external magnetic field. The magnetic induction in each region for a

three-dimensional magnetic spheroidal shell in an arbitrary external magnetic field

H is added to the magnetic induction for the corresponding region for the spheroidal
0

shell surrounding and/or surrounded by a stationary current band. The problem of

deriving the magnetic induction for a current band of finite width surrounding a

solid ferromagnetic spheroid can also be generalized to include an external magnetic
field H in a similar manner. Thus, the magnetic induction for a ferromagnetic

0

spheroidal body in an external magnetic field must be determined.

6
Both constant external field problems were solved by Nixon of the Center. The

closed form mathematical solutions for the magnetic induction for both constant

external field problems were presented in Reference 6 in Cartesian coordinates. It

was necessary to convert these mathematical expressions to spheroidal coord,;ates

to be compatible with this work.

SOLID FERROMAGNETIC SPHEROID IN AN EXTERNAL INDUCING FIELD

The solid ferromagnetic prolate spheroid in a constant external inducing field

is shown in Figir, (E.1). The permeability of the solid spheroid is p 2 and the

boundary of the is determined by n = ni = constant. The permeability p of

vacuum that is external to the spheroid is denoted by Pi" The constant arbitrary

magnetic field is designated as H0O

It is assumed that '2 in the spheroid is constant, and that P is constant in

the rec ion external to the spheroid. Because there are no currents in any regions

in the problem, the magnetic field 11 can be expressed as the negative of the
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11 z

y

NOTE

/2 A = cosh rl

Vi = COS B

Figure E.1 - Ferromagnetic Prolate Spheroidal Solid in a
Constant External Magnetic Field
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gradient of a magnetic scalar potential m in regions I and II, respectively.

H1 V lm for 0 < n < n (E.la)

HII - for fl <p < 0 (E.lb)

where B1 = P 2HI (E.lc)

B II = H (E.ld)

-The major step toward solving this problem is to determine the solutions of the

scalar Laplace's equation in regions I and II which satisfy the boundary conditions

at n = p1 . In terms of B and H, the magnetostatic boundary conditions are

(BII _-I)" n1 2 = 0 at T p n1  (E.2a)

n12 x (HII-H) = 0 at T = T1  (E.2b)

where n 2 is the unit vector normal to the surface of the spheroid, outward from

region I to region II. The general expression of Im and 'llm which satisfy

Laplace's equation in regions I and II, are:
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=A~v + B [(' l(v 2) coslp+V sin .p(E.3a)

~Im=DE-2+Cn Q-)II v + (E cos ' +F sin - k2 )

-H a'v - (H cos 4)+ H sin a a(2_1) (1-Nv2) (E.3b)

where a is one-half of the focal length.

The coefficients are determined by the magnetostatic boundary conditions,

Equations (E.2a) and (E.2b).

2p.1 a Ho

1 H 2_ ~- (E.4a)

oz F

H a p-
E ox 1. 1

D (E.4d)
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Ia
M - 4 HI H°  a

M (E.4e)
E 21 D 2

Hoy 1 i -i
F =(E.4f) D2

where 1 = cosh n (E.4g)

2 11
2~1 _2p +F (E. 4h)

FV i 2 1( .4i

D 2 ( 1 - 21 + I lI-p2 ) (E4i)

26

For details of this derivation thel reader should consult Nixon. The authors have

changed his mathimmati al expressions for the magnetic indfiction in regions I and II

from Cartesian to spheroidal coordinates. This makes the expressions for the mag-

uotic induction compatible with the work presented in the text of this report.

These mathematical expressions are, in regions I and II,
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-'2 (sinh ) [ B cosh n(l-cos2 )

BBI a(sinh2fT + sin20) .  (cosh2 -l-1)

(E.5a)

* + M cosh n(l-c° e) sin IP

( c o s h ) i i ] }

2 (sin 0) )(cosh21)2cos~Bl 2 i2) cosh n ( cos + M sin Cos

a1 (sinh~f + in)) (120)1 eJ

(E.5b)

B a n B sin y + m cos ,)(cosh2n-1) (1-cos2)

a(sinh rl sin 0

Bi -IA1 (sinhTl 2 coshn + _______~ Cs

tL cosh 2  +- (coshfl+1)

,I (sinh2 nl + sin

+2 + 2 coshn Zncoshrl+l

(oh2n13/ (cosh 2n_1)' (cs(nl) coshTI-1

[ - Cos 2,e) (E cos IP+ Fsin )]- H za cosO

-a (H0o cos + Hys in ip)coshT) (1-cos2 6) ,

(cosh 2 fll) (E.5c)
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a ).j1(sin )h 9(oh+\

B0 1  E osihf + sinY -2+Cosf e ' 2cosh n

G - Cos 2~n~ (1 ][(2cosh ) I

cos-- 1 ]
U~~~~~ - (CO2 sh0)i ( cahf.) o csh

2

2i a Qos 0 oshn-

cas op si H s a(oh2r- G Cos 2 0) (E.5d)
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FERROMAGNETIC PROLATE SPHEROIDAL SHELL IN AN EXTERNAL INDUCING FIELD

The problem of the spheroidal shell is similar to the problem of the solid

spheroid. The inner boundary of the prolate spheroidal is lI and the outer boundary

is n2 (see Figure E.2)). The permeability of the magnetic material in the shell is

P2 and the permeability Po of vacuum that is internal and external to the shell is

denoted by pi" The constant external magnetic field is designated by Ho.o0

The problem of deriving the closed form mathematical expressions for the mag-

netic flux density in each of the three regions (I through III) was solved in detail
~6

by Nixon. The problem was solved in a method exactly analogous to the method used

to solve the problem of a solid spheroid in a constant external magnetic field.

For details of the derivation, Reference 6 should be consulted.

The general expressions for the magnetic scalar potential m in regions I

through III are

A! v + B' [ 2l/l_]2\ Co
Ad EmB A cosIm +  2I -2

+ M ! [(2-i)(iV2)1 sin P (E.6a)

[G'+ H/ (-2 ())]V +[I(2.i
~IIm + &

+ J/- (2 1) n (+l1)](l 2) cos

_______& 2 knV sin i

L/WC -7(1) .~~)(v) (t.6b)
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[if II I

77
NOTE

Figurc~ E.2 - ikrromagnetic Prolate Spheroidal Shell in a
Constant External Magnetic Field
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D [2 + tkn ( viT)]v + cos + F' sin

2C L (Cl in-Nt) 2~)~ H a v
(~zOz

- cos + H sin a (E 60ox oy

The coefficients are determined by the usual magnetostatic boundary conditions

on the spheroidal surfaces at n = and q The coefficients determined by

this method are

H oz 212 2

A'1(2 )(2 + 2) (E.7)

L2 22_~

:C2

G1 oz a 2 [2 + ( Cl 2 - in

P 2LO -2n Kl- 1 ) (E.8)
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221 2 4 - + 2 + i1
___) ~2 '1 C2+1_

i F , p2 2 nF\1

H _ oz 1 F2_1o 2II 2 I 2 u

H al 1  ( 2F
H - O DZ +- ) (E.10)

:"( 2+1] 2[2  
E2 ( +1 2C1

DF..- 2 + C ~ 1I~2 - Zn 2 1 - + Qn 1.Fl~l122(L= + = j \2 ,--i j

~ 2 ' )L2~ - 2 2 F i1 2 'I
2

2 I

(Note: Above equation continued on next page)
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( r-

(180

( ). Zn1 (. ) 1 (E. 11)

'2 \2 1 2) 2 2 31 2 ()

+- Zn(+'j 2~ -k 1 (2+n

(1 2 ' (E1 ~ / +L 2_1 5
(Note Abv qato otnudo ex a )
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1 2 22 (2-1) +
2 2 (2 _)3/2 + 2,T _

(2f2  (c-1')C

__ __ _ 2 2 2 p2 +1

-2 (C)3/2 (2 - ( -, "

IL~ E§In ( 2~'1 12 ,'3/' 2

~V~) (2 1-) 22'J 2k2' ) 1) (2)3_

+ 2 - ~([-2 U1-2 +ljA
(2 )2 (2) 2 2] (2 '1( 2

(E.13)
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H a ___ __ 1'-l 2I
, - ox 2 2 C(2._ (,_,)' ,,2--J[ 3/2

2) (?y (+)]O2 ) /)[ 2)7
-' 2 C2 -2

+ I 2 2 2- -

S+ - n -- /J j /2 /2,

2 )

t- ( 2_) 9n\-- ( 2_1) ( 2 1 ' 2 2g2Zn - 2~' ~ 1 2_22372

\-/1 ( ) n --IL (2) k52 ) 3,2

2 1- ) 2 2 /2  1-

(~~~i) (E2L~ i ( . 4
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I H0o ap P, 2 2 2_1 j2

( 2 2 C 2 /k '2 

2 )3 / 2 + 7 21 7 Zn _ _ _

+ -1 jzn (C)-~l~ f'

r;2 + 2 12 2 ~ J(.5
22 2 9 '~

2~)y [ 22 2 'J (' 2)/
2_1)2 ) ( C

+ 2 2ZnC2 ( i Z _ L2+ '2 2D 2) ( C) _1 - L2 (n) 2 _ 3/

2 ~ +\ +1 __

- i - n - F ~( 2 )

2_1! kn ill (21) 3/2 +2 n-r2 )

* (Note: Above equation continued on next page,.
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' 2 1\ + 2 kn_22 2 2 \ 
p-I

/9\-

2 [ 2C2 [ 2+1 ___%_ I 2C2
- - - - (- 2_

- ( ) Y- +22  n 2 2

( -i) J\) 3 /2 +2_ ( ) ( l2

o1 E2n Equ n 2 _ 2 g).C2 F2C 1 (C21 ~ -fl 2 + 2

(184

susiuin .. herefo.... e,. M', F'.. ', and.L'.are.deermined.by.subtitutin.,H fo

HCi Eqai n 2_12 th2g (E. ) (EOCy+
Cox
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The authors have changed Nixon's mathematical expressions for the magnetic

induction in regions I through III from Cartesian to spheroidal coordinates. 
This

makes the expressions for the magnetic induction compatible with the work 
presented

in the text of this report. The mathematical expressions in regions I through III

are

-ii (s inh j ~2
B cosh n)(l-cos 0

BT 2 -I 2Cos U+ Cos4

a(sinh rj +sin 0) IL (h 2 n-i) 2

+ M/ cosh T (i- cos~0) sin

(cosh
2n l) 

(E.17a)

Br 1 cos

BI a sinh sin - Bsin + M / cos 0 ( cos ) -(E.17c)

a(sinh 2T + sin 20)

(Note: Above equation is continued on next page.)
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II

+ Icosh ri - 2 3+ 2

\(Cosh n-1) (cosh 2n-i) (cosh2 n-i)

coh~~ csh~i2 ( K'coshnl

cosh - n csh+l (1-cos 2e) cos +-

(cosh n-i) V(cosh2 n1)

1[ 22cosh nl /coshn+i
3/-2 +  coshnl

L (cosh2 n-i) o 2 -l) ) hn(cosh-2-l)

22ose) sin (E.18a)

B O n G co sh+H 2 + coshn n Cos
a(sinh2n + sin2 e)

2 2 cosh n 2 /coshri+l

(cosh2 n-) + ( o - n-) n cshn i j
(cs -i) ohDI £ Ii

L + oLh2n) cash

2 'sh2n-1shn 2

Cos Cos -K (cash n-) + L 2 cosh (cosh n-i)
(i - cos0) L(cosh 2r-l)

(coshl+1' cos esinq 8
Zn Cshn-, 1,co 2 0) (E.18b)
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B2 I (cosh 2n-i) + i12cosh 71
hp a sinh n sin 60(oh2n1

(coshrI-i)(ah1i

(l cosh f-i csh 2 r- Zn oh)l (- 2 )Cs(.1c

(cosh~ 2 rl1 (coshnTI-\

-1i1 (sinh i) [ -2 cahn+ coshn+i

:1 Bniii = si h T + sin 0) D \ ash) ] c s

-2 + 2 cash n l cashnl+1
+ ( o s 2 I - ) 1 - + ( c o s h 2 n -i ) ( c o s h 2 n - 1 ) 9 , o h -

[1-Cs 2 ) (E'cos + F'sin H za cos O

a( xcos 1 + H ":ysin ip) cashn (i-cas 20)
(cash Tn-i)) (E i 9a)
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(sin 0) (
. 2 2 Df- 2 + cosh n kn

Bx::=a(sinh 2 n + sin 0 ) L r Cashp+-1
-Csh r-1)

c2 0 2 cash

2cs l1) Zn (coshri- ~H z a cosh~

2r+ (H Cosp+ H sin~p a cos O(cash nI-i)
-ba y(1 - Cs 0) (E.19b)

B I ~(-E'sin v,+F'cos )Jollq~i a(z~nh rn sin ~ s

2cosh (cos(h- I h, us h
2(C ch~

(cush -

+ (11 sin - *Ox 
(E I159)
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